Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -36,6 +36,7 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
36 |
)
|
37 |
processor = AutoProcessor.from_pretrained(MODEL_DIR)
|
38 |
|
|
|
39 |
def chat_qwen_vl(message: str, history: list, temperature: float = 0.1, max_new_tokens: int = 1024):
|
40 |
# —— 原有多模态输入构造 —— #
|
41 |
messages = [
|
@@ -49,46 +50,30 @@ def chat_qwen_vl(message: str, history: list, temperature: float = 0.1, max_new_
|
|
49 |
text = processor.apply_chat_template(
|
50 |
messages, tokenize=False, add_generation_prompt=True
|
51 |
)
|
|
|
52 |
image_inputs, video_inputs = process_vision_info(messages)
|
53 |
inputs = processor(
|
54 |
text=[text],
|
55 |
images=image_inputs,
|
56 |
videos=video_inputs,
|
57 |
-
padding=
|
58 |
return_tensors="pt"
|
59 |
).to(model.device)
|
60 |
|
61 |
-
# —— 流式生成部分 —— #
|
62 |
-
# 1. 构造 streamer,用 processor.tokenizer(AutoProcessor 内部自带 tokenizer)
|
63 |
-
streamer = TextIteratorStreamer(
|
64 |
-
processor.tokenizer,
|
65 |
-
timeout=100.0,
|
66 |
-
skip_prompt=True,
|
67 |
-
skip_special_tokens=True
|
68 |
-
)
|
69 |
-
|
70 |
# 2. 把 streamer 和生成参数一起传给 model.generate
|
71 |
gen_kwargs = dict(
|
72 |
**inputs, # 包含 input_ids, pixel_values, attention_mask 等
|
73 |
-
streamer=streamer, # 关键:挂载 streamer
|
74 |
top_k=1024,
|
75 |
max_new_tokens=max_new_tokens,
|
76 |
temperature=temperature,
|
77 |
top_p=0.1
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
# 4. 在主线程中实时读取并 yield
|
87 |
-
buffer = []
|
88 |
-
for chunk in streamer:
|
89 |
-
buffer.append(chunk)
|
90 |
-
# 每次拿到新片段就拼接并输出
|
91 |
-
yield "".join(buffer)
|
92 |
|
93 |
|
94 |
# --------- 3D Mesh Coloring Function ---------
|
|
|
36 |
)
|
37 |
processor = AutoProcessor.from_pretrained(MODEL_DIR)
|
38 |
|
39 |
+
|
40 |
def chat_qwen_vl(message: str, history: list, temperature: float = 0.1, max_new_tokens: int = 1024):
|
41 |
# —— 原有多模态输入构造 —— #
|
42 |
messages = [
|
|
|
50 |
text = processor.apply_chat_template(
|
51 |
messages, tokenize=False, add_generation_prompt=True
|
52 |
)
|
53 |
+
print(text)
|
54 |
image_inputs, video_inputs = process_vision_info(messages)
|
55 |
inputs = processor(
|
56 |
text=[text],
|
57 |
images=image_inputs,
|
58 |
videos=video_inputs,
|
59 |
+
padding=False,
|
60 |
return_tensors="pt"
|
61 |
).to(model.device)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# 2. 把 streamer 和生成参数一起传给 model.generate
|
64 |
gen_kwargs = dict(
|
65 |
**inputs, # 包含 input_ids, pixel_values, attention_mask 等
|
|
|
66 |
top_k=1024,
|
67 |
max_new_tokens=max_new_tokens,
|
68 |
temperature=temperature,
|
69 |
top_p=0.1
|
70 |
)
|
71 |
+
generated_ids = model.generate(**gen_kwargs)
|
72 |
+
generated_ids_trimmed = [
|
73 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
74 |
+
output_text = processor.batch_decode(
|
75 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
76 |
+
yield output_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
# --------- 3D Mesh Coloring Function ---------
|