yejunliang23 commited on
Commit
927a788
Β·
verified Β·
1 Parent(s): b4f9f85

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +276 -0
app.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+
5
+ import os
6
+ os.environ['SPCONV_ALGO'] = 'native'
7
+ from typing import *
8
+ import torch
9
+ import numpy as np
10
+ import imageio
11
+ import uuid
12
+ from easydict import EasyDict as edict
13
+ from PIL import Image
14
+ from trellis.pipelines import TrellisImageTo3DPipeline
15
+ from trellis.representations import Gaussian, MeshExtractResult
16
+ from trellis.utils import render_utils, postprocessing_utils
17
+
18
+ import logging
19
+
20
+ # Configure logging
21
+ logging.basicConfig(
22
+ level=logging.INFO,
23
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
24
+ handlers=[
25
+ logging.StreamHandler()
26
+ ]
27
+ )
28
+ logger = logging.getLogger(__name__)
29
+
30
+ # Log environment variables
31
+ logger.info(f"ATTN_BACKEND: {os.environ.get('ATTN_BACKEND')}")
32
+ logger.info(f"ATTN_DEBUG: {os.environ.get('ATTN_DEBUG')}")
33
+ logger.info(f"SPARSE_BACKEND: {os.environ.get('SPARSE_BACKEND')}")
34
+ logger.info(f"SPARSE_DEBUG: {os.environ.get('SPARSE_DEBUG')}")
35
+ logger.info(f"SPARSE_ATTN_BACKEND: {os.environ.get('SPARSE_ATTN_BACKEND')}")
36
+
37
+ MAX_SEED = np.iinfo(np.int32).max
38
+ TMP_DIR = "/tmp/Trellis-demo"
39
+
40
+ os.makedirs(TMP_DIR, exist_ok=True)
41
+
42
+
43
+ def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
44
+ """
45
+ Preprocess the input image.
46
+ Args:
47
+ image (Image.Image): The input image.
48
+ Returns:
49
+ str: uuid of the trial.
50
+ Image.Image: The preprocessed image.
51
+ """
52
+ trial_id = str(uuid.uuid4())
53
+ processed_image = pipeline.preprocess_image(image)
54
+ processed_image.save(f"{TMP_DIR}/{trial_id}.png")
55
+ return trial_id, processed_image
56
+
57
+
58
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
59
+ return {
60
+ 'gaussian': {
61
+ **gs.init_params,
62
+ '_xyz': gs._xyz.cpu().numpy(),
63
+ '_features_dc': gs._features_dc.cpu().numpy(),
64
+ '_scaling': gs._scaling.cpu().numpy(),
65
+ '_rotation': gs._rotation.cpu().numpy(),
66
+ '_opacity': gs._opacity.cpu().numpy(),
67
+ },
68
+ 'mesh': {
69
+ 'vertices': mesh.vertices.cpu().numpy(),
70
+ 'faces': mesh.faces.cpu().numpy(),
71
+ },
72
+ 'trial_id': trial_id,
73
+ }
74
+
75
+
76
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
77
+ gs = Gaussian(
78
+ aabb=state['gaussian']['aabb'],
79
+ sh_degree=state['gaussian']['sh_degree'],
80
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
81
+ scaling_bias=state['gaussian']['scaling_bias'],
82
+ opacity_bias=state['gaussian']['opacity_bias'],
83
+ scaling_activation=state['gaussian']['scaling_activation'],
84
+ )
85
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
86
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
87
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
88
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
89
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
90
+
91
+ mesh = edict(
92
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
93
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
94
+ )
95
+
96
+ return gs, mesh, state['trial_id']
97
+
98
+
99
+ @spaces.GPU
100
+ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
101
+ """
102
+ Convert an image to a 3D model.
103
+ Args:
104
+ trial_id (str): The uuid of the trial.
105
+ seed (int): The random seed.
106
+ randomize_seed (bool): Whether to randomize the seed.
107
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
108
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
109
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
110
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
111
+ Returns:
112
+ dict: The information of the generated 3D model.
113
+ str: The path to the video of the 3D model.
114
+ """
115
+ if randomize_seed:
116
+ seed = np.random.randint(0, MAX_SEED)
117
+ outputs = pipeline.run(
118
+ Image.open(f"{TMP_DIR}/{trial_id}.png"),
119
+ seed=seed,
120
+ formats=["gaussian", "mesh"],
121
+ preprocess_image=False,
122
+ sparse_structure_sampler_params={
123
+ "steps": ss_sampling_steps,
124
+ "cfg_strength": ss_guidance_strength,
125
+ },
126
+ slat_sampler_params={
127
+ "steps": slat_sampling_steps,
128
+ "cfg_strength": slat_guidance_strength,
129
+ },
130
+ )
131
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
132
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
133
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
134
+ trial_id = uuid.uuid4()
135
+ video_path = f"{TMP_DIR}/{trial_id}.mp4"
136
+ os.makedirs(os.path.dirname(video_path), exist_ok=True)
137
+ imageio.mimsave(video_path, video, fps=15)
138
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
139
+ return state, video_path
140
+
141
+
142
+ @spaces.GPU
143
+ def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
144
+ """
145
+ Extract a GLB file from the 3D model.
146
+ Args:
147
+ state (dict): The state of the generated 3D model.
148
+ mesh_simplify (float): The mesh simplification factor.
149
+ texture_size (int): The texture resolution.
150
+ Returns:
151
+ str: The path to the extracted GLB file.
152
+ """
153
+ gs, mesh, trial_id = unpack_state(state)
154
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
155
+ glb_path = f"{TMP_DIR}/{trial_id}.glb"
156
+ glb.export(glb_path)
157
+ return glb_path, glb_path
158
+
159
+
160
+ def activate_button() -> gr.Button:
161
+ return gr.Button(interactive=True)
162
+
163
+
164
+ def deactivate_button() -> gr.Button:
165
+ return gr.Button(interactive=False)
166
+
167
+
168
+ with gr.Blocks() as demo:
169
+ gr.Markdown("""
170
+ ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
171
+ * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
172
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
173
+ """)
174
+
175
+ with gr.Row():
176
+ with gr.Column():
177
+ image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
178
+
179
+ with gr.Accordion(label="Generation Settings", open=False):
180
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
181
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
182
+ gr.Markdown("Stage 1: Sparse Structure Generation")
183
+ with gr.Row():
184
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
185
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
186
+ gr.Markdown("Stage 2: Structured Latent Generation")
187
+ with gr.Row():
188
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
189
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
190
+
191
+ generate_btn = gr.Button("Generate")
192
+
193
+ with gr.Accordion(label="GLB Extraction Settings", open=False):
194
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
195
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
196
+
197
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
198
+
199
+ with gr.Column():
200
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
201
+ model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
202
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
203
+
204
+ trial_id = gr.Textbox(visible=False)
205
+ output_buf = gr.State()
206
+
207
+ # Example images at the bottom of the page
208
+ with gr.Row():
209
+ examples = gr.Examples(
210
+ examples=[
211
+ f'assets/example_image/{image}'
212
+ for image in os.listdir("assets/example_image")
213
+ ],
214
+ inputs=[image_prompt],
215
+ fn=preprocess_image,
216
+ outputs=[trial_id, image_prompt],
217
+ run_on_click=True,
218
+ examples_per_page=64,
219
+ )
220
+
221
+ # Handlers
222
+ image_prompt.upload(
223
+ preprocess_image,
224
+ inputs=[image_prompt],
225
+ outputs=[trial_id, image_prompt],
226
+ )
227
+ image_prompt.clear(
228
+ lambda: '',
229
+ outputs=[trial_id],
230
+ )
231
+
232
+ generate_btn.click(
233
+ image_to_3d,
234
+ inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
235
+ outputs=[output_buf, video_output],
236
+ ).then(
237
+ activate_button,
238
+ outputs=[extract_glb_btn],
239
+ )
240
+
241
+ video_output.clear(
242
+ deactivate_button,
243
+ outputs=[extract_glb_btn],
244
+ )
245
+
246
+ extract_glb_btn.click(
247
+ extract_glb,
248
+ inputs=[output_buf, mesh_simplify, texture_size],
249
+ outputs=[model_output, download_glb],
250
+ ).then(
251
+ activate_button,
252
+ outputs=[download_glb],
253
+ )
254
+
255
+ model_output.clear(
256
+ deactivate_button,
257
+ outputs=[download_glb],
258
+ )
259
+
260
+
261
+ # Launch the Gradio app
262
+ if __name__ == "__main__":
263
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
264
+ if torch.cuda.is_available():
265
+ pipeline.cuda()
266
+ print("CUDA is available. Using GPU.")
267
+ else:
268
+ print("CUDA not available. Falling back to CPU.")
269
+ try:
270
+ pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
271
+ except:
272
+ pass
273
+ print(f"CUDA Available: {torch.cuda.is_available()}")
274
+ print(f"CUDA Version: {torch.version.cuda}")
275
+ print(f"Number of GPUs: {torch.cuda.device_count()}")
276
+ demo.launch(debug=True)