Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,59 +1,13 @@
|
|
| 1 |
-
|
| 2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
-
import threading
|
| 6 |
-
import gradio as gr
|
| 7 |
-
|
| 8 |
-
# Initialize the Flask app
|
| 9 |
-
app = Flask(__name__)
|
| 10 |
-
|
| 11 |
-
# Load the processor and model outside of the route to avoid reloading it with each request
|
| 12 |
-
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 13 |
-
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 14 |
-
|
| 15 |
-
@app.route('/classify', methods=['POST'])
|
| 16 |
-
def classify_image():
|
| 17 |
-
try:
|
| 18 |
-
# Get the image URL from the POST request
|
| 19 |
-
data = request.get_json()
|
| 20 |
-
image_url = data.get('image_url')
|
| 21 |
-
|
| 22 |
-
if not image_url:
|
| 23 |
-
return jsonify({"error": "Image URL not provided"}), 400
|
| 24 |
-
|
| 25 |
-
# Fetch the image from the URL
|
| 26 |
-
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 27 |
-
|
| 28 |
-
# Preprocess the image
|
| 29 |
-
inputs = processor(images=image, return_tensors="pt")
|
| 30 |
-
|
| 31 |
-
# Run the image through the model
|
| 32 |
-
outputs = model(**inputs)
|
| 33 |
-
logits = outputs.logits
|
| 34 |
-
|
| 35 |
-
# Get the predicted class
|
| 36 |
-
predicted_class_idx = logits.argmax(-1).item()
|
| 37 |
-
predicted_class = model.config.id2label[predicted_class_idx]
|
| 38 |
-
|
| 39 |
-
# Return the classification result
|
| 40 |
-
return jsonify({
|
| 41 |
-
"image_url": image_url,
|
| 42 |
-
"predicted_class": predicted_class
|
| 43 |
-
})
|
| 44 |
-
|
| 45 |
-
except Exception as e:
|
| 46 |
-
return jsonify({"error": str(e)}), 500
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
flask_thread = threading.Thread(target=run_flask)
|
| 54 |
-
flask_thread.start()
|
| 55 |
-
|
| 56 |
-
# Gradio interface
|
| 57 |
def predict_image(image_url):
|
| 58 |
try:
|
| 59 |
# Load image from URL
|
|
@@ -72,18 +26,13 @@ def predict_image(image_url):
|
|
| 72 |
except Exception as e:
|
| 73 |
return str(e)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
api_url = "http://127.0.0.1:5000/classify"
|
| 77 |
-
|
| 78 |
-
# Create Gradio interface with API info
|
| 79 |
iface = gr.Interface(
|
| 80 |
fn=predict_image,
|
| 81 |
-
inputs=gr.Textbox(label="Image URL"
|
| 82 |
-
outputs=gr.Textbox(label="Predicted Class"),
|
| 83 |
-
title="NSFW Image Detection"
|
| 84 |
-
description=f"You can get your image classification by sending an API request to: {api_url}. Example:\n"
|
| 85 |
-
f"curl -X POST {api_url} -H 'Content-Type: application/json' -d '{{\"image_url\": \"YOUR_IMAGE_URL\"}}'"
|
| 86 |
)
|
| 87 |
|
| 88 |
-
# Launch
|
| 89 |
-
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load the model and processor
|
| 7 |
+
processor = ViTImageProcessor.from_pretrained('yeftakun/vit-base-nsfw-detector')
|
| 8 |
+
model = AutoModelForImageClassification.from_pretrained('yeftakun/vit-base-nsfw-detector')
|
| 9 |
|
| 10 |
+
# Define prediction function
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def predict_image(image_url):
|
| 12 |
try:
|
| 13 |
# Load image from URL
|
|
|
|
| 26 |
except Exception as e:
|
| 27 |
return str(e)
|
| 28 |
|
| 29 |
+
# Create Gradio interface
|
|
|
|
|
|
|
|
|
|
| 30 |
iface = gr.Interface(
|
| 31 |
fn=predict_image,
|
| 32 |
+
inputs=gr.inputs.Textbox(label="Image URL"),
|
| 33 |
+
outputs=gr.outputs.Textbox(label="Predicted Class"),
|
| 34 |
+
title="NSFW Image Detection"
|
|
|
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# Launch the interface
|
| 38 |
+
iface.launch()
|