Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import torchvision.transforms as T
|
|
| 8 |
from PIL import Image
|
| 9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 10 |
import cv2
|
|
|
|
| 11 |
|
| 12 |
colors = [
|
| 13 |
(0, 255, 0),
|
|
@@ -39,7 +40,7 @@ def is_overlapping(rect1, rect2):
|
|
| 39 |
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
| 40 |
|
| 41 |
|
| 42 |
-
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
| 43 |
"""_summary_
|
| 44 |
Args:
|
| 45 |
image (_type_): image or image path
|
|
@@ -69,10 +70,14 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
| 69 |
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 70 |
else:
|
| 71 |
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
| 72 |
-
|
| 73 |
if len(entities) == 0:
|
| 74 |
return image
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
# Not to show too many bboxes
|
| 77 |
entities = entities[:len(color_map)]
|
| 78 |
|
|
@@ -92,11 +97,13 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
|
| 92 |
used_colors = colors # random.sample(colors, k=num_bboxes)
|
| 93 |
|
| 94 |
color_id = -1
|
| 95 |
-
for entity_name, (start, end), bboxes in entities:
|
| 96 |
color_id += 1
|
|
|
|
|
|
|
| 97 |
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
| 98 |
-
if start is None and bbox_id > 0:
|
| 99 |
-
|
| 100 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
| 101 |
|
| 102 |
# draw bbox
|
|
@@ -199,13 +206,17 @@ def main():
|
|
| 199 |
|
| 200 |
color_id = -1
|
| 201 |
entity_info = []
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
color_id += 1
|
| 204 |
-
for bbox_id, _ in enumerate(bboxes):
|
| 205 |
-
if start is None and bbox_id > 0:
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
colored_text = []
|
| 211 |
prev_start = 0
|
|
@@ -219,7 +230,7 @@ def main():
|
|
| 219 |
if end < len(processed_text):
|
| 220 |
colored_text.append((processed_text[end:len(processed_text)], None))
|
| 221 |
|
| 222 |
-
return annotated_image, colored_text
|
| 223 |
|
| 224 |
term_of_use = """
|
| 225 |
### Terms of use
|
|
@@ -271,12 +282,33 @@ def main():
|
|
| 271 |
], inputs=[image_input, text_input, do_sample])
|
| 272 |
gr.Markdown(term_of_use)
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
run_button.click(fn=generate_predictions,
|
| 275 |
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
|
| 276 |
-
outputs=[image_output, text_output1],
|
| 277 |
show_progress=True, queue=True)
|
| 278 |
|
| 279 |
-
demo.launch()
|
| 280 |
|
| 281 |
|
| 282 |
if __name__ == "__main__":
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 10 |
import cv2
|
| 11 |
+
import ast
|
| 12 |
|
| 13 |
colors = [
|
| 14 |
(0, 255, 0),
|
|
|
|
| 40 |
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
| 41 |
|
| 42 |
|
| 43 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
|
| 44 |
"""_summary_
|
| 45 |
Args:
|
| 46 |
image (_type_): image or image path
|
|
|
|
| 70 |
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
| 71 |
else:
|
| 72 |
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
| 73 |
+
|
| 74 |
if len(entities) == 0:
|
| 75 |
return image
|
| 76 |
|
| 77 |
+
indices = list(range(len(entities)))
|
| 78 |
+
if entity_index >= 0:
|
| 79 |
+
indices = [entity_index]
|
| 80 |
+
|
| 81 |
# Not to show too many bboxes
|
| 82 |
entities = entities[:len(color_map)]
|
| 83 |
|
|
|
|
| 97 |
used_colors = colors # random.sample(colors, k=num_bboxes)
|
| 98 |
|
| 99 |
color_id = -1
|
| 100 |
+
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
|
| 101 |
color_id += 1
|
| 102 |
+
if entity_idx not in indices:
|
| 103 |
+
continue
|
| 104 |
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
| 105 |
+
# if start is None and bbox_id > 0:
|
| 106 |
+
# color_id += 1
|
| 107 |
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
| 108 |
|
| 109 |
# draw bbox
|
|
|
|
| 206 |
|
| 207 |
color_id = -1
|
| 208 |
entity_info = []
|
| 209 |
+
filtered_entities = []
|
| 210 |
+
for entity in entities:
|
| 211 |
+
entity_name, (start, end), bboxes = entity
|
| 212 |
+
if start is None:
|
| 213 |
+
continue
|
| 214 |
color_id += 1
|
| 215 |
+
# for bbox_id, _ in enumerate(bboxes):
|
| 216 |
+
# if start is None and bbox_id > 0:
|
| 217 |
+
# color_id += 1
|
| 218 |
+
entity_info.append(((start, end), color_id))
|
| 219 |
+
filtered_entities.append(entity)
|
| 220 |
|
| 221 |
colored_text = []
|
| 222 |
prev_start = 0
|
|
|
|
| 230 |
if end < len(processed_text):
|
| 231 |
colored_text.append((processed_text[end:len(processed_text)], None))
|
| 232 |
|
| 233 |
+
return annotated_image, colored_text, str(filtered_entities)
|
| 234 |
|
| 235 |
term_of_use = """
|
| 236 |
### Terms of use
|
|
|
|
| 282 |
], inputs=[image_input, text_input, do_sample])
|
| 283 |
gr.Markdown(term_of_use)
|
| 284 |
|
| 285 |
+
# record which text span (label) is selected
|
| 286 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
| 287 |
+
|
| 288 |
+
# record the current `entities`
|
| 289 |
+
entity_output = gr.Textbox(visible=False)
|
| 290 |
+
|
| 291 |
+
# get the current selected span label
|
| 292 |
+
def get_text_span_label(evt: gr.SelectData):
|
| 293 |
+
if evt.value[-1] is None:
|
| 294 |
+
return -1
|
| 295 |
+
return int(evt.value[-1])
|
| 296 |
+
# and set this information to `selected`
|
| 297 |
+
text_output1.select(get_text_span_label, None, selected)
|
| 298 |
+
|
| 299 |
+
# update output image when we change the span (enity) selection
|
| 300 |
+
def update_output_image(img_input, image_output, entities, idx):
|
| 301 |
+
entities = ast.literal_eval(entities)
|
| 302 |
+
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
| 303 |
+
return updated_image
|
| 304 |
+
selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
|
| 305 |
+
|
| 306 |
run_button.click(fn=generate_predictions,
|
| 307 |
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
|
| 308 |
+
outputs=[image_output, text_output1, entity_output],
|
| 309 |
show_progress=True, queue=True)
|
| 310 |
|
| 311 |
+
demo.launch(share=True)
|
| 312 |
|
| 313 |
|
| 314 |
if __name__ == "__main__":
|