Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid | |
from cotracker.models.build_cotracker import build_cotracker | |
class CoTrackerPredictor(torch.nn.Module): | |
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"): | |
super().__init__() | |
self.support_grid_size = 6 | |
model = build_cotracker(checkpoint) | |
self.interp_shape = model.model_resolution | |
self.model = model | |
self.model.eval() | |
def forward( | |
self, | |
video, # (B, T, 3, H, W) | |
# input prompt types: | |
# - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame. | |
# *backward_tracking=True* will compute tracks in both directions. | |
# - queries. Queried points of shape (B, N, 3) in format (t, x, y) for frame index and pixel coordinates. | |
# - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask. | |
# You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks. | |
queries: torch.Tensor = None, | |
segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W) | |
grid_size: int = 0, | |
grid_query_frame: int = 0, # only for dense and regular grid tracks | |
backward_tracking: bool = False, | |
): | |
if queries is None and grid_size == 0: | |
tracks, visibilities = self._compute_dense_tracks( | |
video, | |
grid_query_frame=grid_query_frame, | |
backward_tracking=backward_tracking, | |
) | |
else: | |
tracks, visibilities = self._compute_sparse_tracks( | |
video, | |
queries, | |
segm_mask, | |
grid_size, | |
add_support_grid=(grid_size == 0 or segm_mask is not None), | |
grid_query_frame=grid_query_frame, | |
backward_tracking=backward_tracking, | |
) | |
return tracks, visibilities | |
def _compute_dense_tracks(self, video, grid_query_frame, grid_size=80, backward_tracking=False): | |
*_, H, W = video.shape | |
grid_step = W // grid_size | |
grid_width = W // grid_step | |
grid_height = H // grid_step | |
tracks = visibilities = None | |
grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device) | |
grid_pts[0, :, 0] = grid_query_frame | |
for offset in range(grid_step * grid_step): | |
print(f"step {offset} / {grid_step * grid_step}") | |
ox = offset % grid_step | |
oy = offset // grid_step | |
grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox | |
grid_pts[0, :, 2] = ( | |
torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy | |
) | |
tracks_step, visibilities_step = self._compute_sparse_tracks( | |
video=video, | |
queries=grid_pts, | |
backward_tracking=backward_tracking, | |
) | |
tracks = smart_cat(tracks, tracks_step, dim=2) | |
visibilities = smart_cat(visibilities, visibilities_step, dim=2) | |
return tracks, visibilities | |
def _compute_sparse_tracks( | |
self, | |
video, | |
queries, | |
segm_mask=None, | |
grid_size=0, | |
add_support_grid=False, | |
grid_query_frame=0, | |
backward_tracking=False, | |
): | |
B, T, C, H, W = video.shape | |
video = video.reshape(B * T, C, H, W) | |
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True) | |
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
if queries is not None: | |
B, N, D = queries.shape | |
assert D == 3 | |
queries = queries.clone() | |
queries[:, :, 1:] *= queries.new_tensor( | |
[ | |
(self.interp_shape[1] - 1) / (W - 1), | |
(self.interp_shape[0] - 1) / (H - 1), | |
] | |
) | |
elif grid_size > 0: | |
grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device) | |
if segm_mask is not None: | |
segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest") | |
point_mask = segm_mask[0, 0][ | |
(grid_pts[0, :, 1]).round().long().cpu(), | |
(grid_pts[0, :, 0]).round().long().cpu(), | |
].bool() | |
grid_pts = grid_pts[:, point_mask] | |
queries = torch.cat( | |
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], | |
dim=2, | |
).repeat(B, 1, 1) | |
if add_support_grid: | |
grid_pts = get_points_on_a_grid( | |
self.support_grid_size, self.interp_shape, device=video.device | |
) | |
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) | |
grid_pts = grid_pts.repeat(B, 1, 1) | |
queries = torch.cat([queries, grid_pts], dim=1) | |
tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6) | |
if backward_tracking: | |
tracks, visibilities = self._compute_backward_tracks( | |
video, queries, tracks, visibilities | |
) | |
if add_support_grid: | |
queries[:, -self.support_grid_size**2 :, 0] = T - 1 | |
if add_support_grid: | |
tracks = tracks[:, :, : -self.support_grid_size**2] | |
visibilities = visibilities[:, :, : -self.support_grid_size**2] | |
thr = 0.9 | |
visibilities = visibilities > thr | |
# correct query-point predictions | |
# see https://github.com/facebookresearch/co-tracker/issues/28 | |
# TODO: batchify | |
for i in range(len(queries)): | |
queries_t = queries[i, : tracks.size(2), 0].to(torch.int64) | |
arange = torch.arange(0, len(queries_t)) | |
# overwrite the predictions with the query points | |
tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:] | |
# correct visibilities, the query points should be visible | |
visibilities[i, queries_t, arange] = True | |
tracks *= tracks.new_tensor( | |
[(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)] | |
) | |
return tracks, visibilities | |
def _compute_backward_tracks(self, video, queries, tracks, visibilities): | |
inv_video = video.flip(1).clone() | |
inv_queries = queries.clone() | |
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 | |
inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6) | |
inv_tracks = inv_tracks.flip(1) | |
inv_visibilities = inv_visibilities.flip(1) | |
arange = torch.arange(video.shape[1], device=queries.device)[None, :, None] | |
mask = (arange < queries[:, None, :, 0]).unsqueeze(-1).repeat(1, 1, 1, 2) | |
tracks[mask] = inv_tracks[mask] | |
visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]] | |
return tracks, visibilities | |
class CoTrackerOnlinePredictor(torch.nn.Module): | |
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"): | |
super().__init__() | |
self.support_grid_size = 6 | |
model = build_cotracker(checkpoint) | |
self.interp_shape = model.model_resolution | |
self.step = model.window_len // 2 | |
self.model = model | |
self.model.eval() | |
def forward( | |
self, | |
video_chunk, | |
is_first_step: bool = False, | |
queries: torch.Tensor = None, | |
grid_size: int = 10, | |
grid_query_frame: int = 0, | |
add_support_grid=False, | |
): | |
B, T, C, H, W = video_chunk.shape | |
# Initialize online video processing and save queried points | |
# This needs to be done before processing *each new video* | |
if is_first_step: | |
self.model.init_video_online_processing() | |
if queries is not None: | |
B, N, D = queries.shape | |
assert D == 3 | |
queries = queries.clone() | |
queries[:, :, 1:] *= queries.new_tensor( | |
[ | |
(self.interp_shape[1] - 1) / (W - 1), | |
(self.interp_shape[0] - 1) / (H - 1), | |
] | |
) | |
elif grid_size > 0: | |
grid_pts = get_points_on_a_grid( | |
grid_size, self.interp_shape, device=video_chunk.device | |
) | |
queries = torch.cat( | |
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], | |
dim=2, | |
) | |
if add_support_grid: | |
grid_pts = get_points_on_a_grid( | |
self.support_grid_size, self.interp_shape, device=video_chunk.device | |
) | |
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) | |
queries = torch.cat([queries, grid_pts], dim=1) | |
self.queries = queries | |
return (None, None) | |
video_chunk = video_chunk.reshape(B * T, C, H, W) | |
video_chunk = F.interpolate( | |
video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True | |
) | |
video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
tracks, visibilities, __ = self.model( | |
video=video_chunk, | |
queries=self.queries, | |
iters=6, | |
is_online=True, | |
) | |
thr = 0.9 | |
return ( | |
tracks | |
* tracks.new_tensor( | |
[ | |
(W - 1) / (self.interp_shape[1] - 1), | |
(H - 1) / (self.interp_shape[0] - 1), | |
] | |
), | |
visibilities > thr, | |
) | |