ychenhq's picture
Upload folder using huggingface_hub
04fbff5 verified
'''
This code is partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet).
'''
import os
import sys
import torch
import numpy as np
from torch.utils.data import Dataset
sys.path.append('.')
from utils.utils import read, img2tensor
from datasets.gopro_datasets import (
random_resize_woflow, random_crop_woflow, center_crop_woflow,
random_reverse_channel_woflow, random_vertical_flip_woflow,
random_horizontal_flip_woflow, random_rotate_woflow,
random_reverse_time_woflow
)
class Adobe240_Dataset(Dataset):
def __init__(self, dataset_dir='data/adobe240/test_frames', interFrames=7, augment=True):
super().__init__()
self.augment = augment
self.interFrames = interFrames
self.setLength = interFrames + 2
self.dataset_dir = os.path.join(dataset_dir)
video_list = os.listdir(self.dataset_dir)[9::10]
self.frames_list = []
self.file_list = []
for video in video_list:
frames = sorted(os.listdir(os.path.join(self.dataset_dir, video)))
n_sets = (len(frames) - self.setLength) // (interFrames + 1) + 1
videoInputs = [frames[(interFrames + 1) * i: (interFrames + 1) * i + self.setLength] for i in range(n_sets)]
videoInputs = [[os.path.join(video, f) for f in group] for group in videoInputs]
self.file_list.extend(videoInputs)
def __getitem__(self, idx):
clip_idx = idx // self.interFrames
embt_idx = idx % self.interFrames
imgpaths = [os.path.join(self.dataset_dir, fp) for fp in self.file_list[clip_idx]]
pick_idxs = list(range(0, self.setLength, self.interFrames + 1))
imgt_beg = self.setLength // 2 - self.interFrames // 2
imgt_end = self.setLength // 2 + self.interFrames // 2 + self.interFrames % 2
imgt_idx = list(range(imgt_beg, imgt_end))
input_paths = [imgpaths[idx] for idx in pick_idxs]
imgt_paths = [imgpaths[idx] for idx in imgt_idx]
img0 = np.array(read(input_paths[0]))
imgt = np.array(read(imgt_paths[embt_idx]))
img1 = np.array(read(input_paths[1]))
embt = torch.from_numpy(np.array((embt_idx + 1) / (self.interFrames + 1)
).reshape(1, 1, 1).astype(np.float32))
if self.augment == True:
img0, imgt, img1 = random_resize_woflow(img0, imgt, img1, p=0.1)
img0, imgt, img1 = random_crop_woflow(img0, imgt, img1, crop_size=(224, 224))
img0, imgt, img1 = random_reverse_channel_woflow(img0, imgt, img1, p=0.5)
img0, imgt, img1 = random_vertical_flip_woflow(img0, imgt, img1, p=0.3)
img0, imgt, img1 = random_horizontal_flip_woflow(img0, imgt, img1, p=0.5)
img0, imgt, img1 = random_rotate_woflow(img0, imgt, img1, p=0.05)
img0, imgt, img1, embt = random_reverse_time_woflow(img0, imgt, img1,
embt=embt, p=0.5)
else:
img0, imgt, img1 = center_crop_woflow(img0, imgt, img1, crop_size=(512, 512))
img0 = img2tensor(img0).squeeze(0)
imgt = img2tensor(imgt).squeeze(0)
img1 = img2tensor(img1).squeeze(0)
return {'img0': img0.float(),
'imgt': imgt.float(),
'img1': img1.float(),
'embt': embt}
def __len__(self):
return len(self.file_list) * self.interFrames