File size: 6,919 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import os
import numpy as np
from tqdm import tqdm

from vbench2_beta_i2v.third_party.cotracker.utils.visualizer import Visualizer
from vbench2_beta_i2v.utils import load_video, load_dimension_info


def transform(vector):
    x = np.mean([item[0] for item in vector])
    y = np.mean([item[1] for item in vector])
    return [x, y]


def transform_class(vector, min_reso, factor=0.005): # 768*0.05
    scale = min_reso * factor
    x, y = vector
    direction = []

    if x > scale:
        direction.append("right")
    elif x < -scale:
        direction.append("left")
    
    if y > scale:
        direction.append("down")
    elif y < -scale:
        direction.append("up")

    return direction if direction else ["static"]



class CameraPredict:
    def __init__(self, device, submodules_list):
        self.device = device
        self.grid_size = 10
        try:
            self.model = torch.hub.load(submodules_list["repo"], submodules_list["model"]).to(self.device)
        except:
            # workaround for CERTIFICATE_VERIFY_FAILED (see: https://github.com/pytorch/pytorch/issues/33288#issuecomment-954160699)
            import ssl
            ssl._create_default_https_context = ssl._create_unverified_context
            self.model = torch.hub.load(submodules_list["repo"], submodules_list["model"]).to(self.device)

    def infer(self, video_path, save_video=False, save_dir="./saved_videos"):
        # load video
        video = load_video(video_path, return_tensor=False)
        # set scale
        height, width = video.shape[1], video.shape[2]
        self.scale = min(height, width)
        video = torch.from_numpy(video).permute(0, 3, 1, 2)[None].float().to(self.device) # B T C H W
        pred_tracks, pred_visibility = self.model(video, grid_size=self.grid_size) # B T N 2,  B T N 1
        
        if save_video:
            video_name = os.path.basename(video_path)[:-4]
            vis = Visualizer(save_dir=save_dir, pad_value=120, linewidth=3)
            vis.visualize(video, pred_tracks, pred_visibility, filename=video_name)

        return pred_tracks[0].long().detach().cpu().numpy()
    

    def get_edge_point(self, track):
        middle = self.grid_size // 2
        top = [list(track[0, i, :]) for i in range(middle-2, middle+2)]
        down = [list(track[self.grid_size-1, i, :]) for i in range(middle-2, middle+2)]
        left = [list(track[i, 0, :]) for i in range(middle-2, middle+2)]
        right = [list(track[i, self.grid_size-1, :]) for i in range(middle-2, middle+2)]
        
        return top, down, left, right
    

    def get_edge_direction(self, track1, track2):
        edge_points1 = self.get_edge_point(track1)
        edge_points2 = self.get_edge_point(track2)

        vector_results = []
        for points1, points2 in zip(edge_points1, edge_points2):
            vectors = [[end[0]-start[0], end[1]-start[1]] for start, end in zip(points1, points2)]
            vector_results.append(vectors)
        vector_results = list(map(transform, vector_results)) 
        class_results = [transform_class(vector, min_reso=self.scale) for vector in vector_results]

        return class_results


    def classify_top_down(self, top, down):
        results = []
        classes = [f"{item_t}_{item_d}" for item_t in top for item_d in down]

        results_mapping = {
            "left_left": "pan_right",
            "right_right": "pan_left",
            "down_down": "tilt_up",
            "up_up": "tilt_down",
            "up_down": "zoom_in",
            "down_up": "zoom_out",
            "static_static": "static"
        }
        results = [results_mapping.get(cls) for cls in classes if cls in results_mapping]
        return results if results else ["None"]


    def classify_left_right(self, left, right):
        results = []
        classes = [f"{item_l}_{item_r}" for item_l in left for item_r in right]

        results_mapping = {
            "left_left": "pan_right",
            "right_right": "pan_left",
            "down_down": "tilt_up",
            "up_up": "tilt_down",
            "left_right": "zoom_in",
            "right_left": "zoom_out",
            "static_static": "static"
        }
        results = [results_mapping.get(cls) for cls in classes if cls in results_mapping]
        return results if results else ["None"]


    def camera_classify(self, track1, track2):
        top, down, left, right = self.get_edge_direction(track1, track2)

        top_results = self.classify_top_down(top, down)
        left_results = self.classify_left_right(left, right)

        results = list(set(top_results+left_results))
        if "static" in results and len(results)>1:
            results.remove("static")
        if "None" in results and len(results)>1:
            results.remove("None")  

        return results


    def predict(self, video_path):
        pred_track = self.infer(video_path)
        track1 = pred_track[0].reshape((self.grid_size, self.grid_size, 2))
        track2 = pred_track[-1].reshape((self.grid_size, self.grid_size, 2))
        results = self.camera_classify(track1, track2)

        return results


def get_type(video_name):
    camera_mapping = {
        "camera pans left": "pan_left",
        "camera pans right": "pan_right",
        "camera tilts up": "tilt_up",
        "camera tilts down": "tilt_down",
        "camera zooms in": "zoom_in",
        "camera zooms out": "zoom_out",
        "camera static": "static"
    }

    for item, value in camera_mapping.items():
        if item in video_name:
            return value
        
    raise ValueError("Not a recognized video name")



def camera_motion(camera, video_list):
    sim = []
    video_results = []
    diff_type_results = {
        "pan_left":[],
        "pan_right":[],
        "tilt_up":[],
        "tilt_down":[],
        "zoom_in":[],
        "zoom_out":[],
        "static":[],
    }
    for video_path in tqdm(video_list):
        target_type = get_type(os.path.basename(video_path))
        predict_results = camera.predict(video_path)

        video_score = 1.0 if target_type in predict_results else 0.0
        diff_type_results[target_type].append(video_score)
        video_results.append({'video_path': video_path, 'video_results': video_score, 'prompt_type':target_type, 'predict_type': predict_results})
        sim.append(video_score)
    
    avg_score = np.mean(sim)

    for key, value in diff_type_results.items():
        diff_type_results[key] = np.mean(value)

    return avg_score, diff_type_results, video_results


def compute_camera_motion(json_dir, device, submodules_list):
    camera = CameraPredict(device, submodules_list)
    video_list, _ = load_dimension_info(json_dir, dimension='camera_motion', lang='en')
    all_results, diff_type_results, video_results = camera_motion(camera, video_list)
    return all_results, diff_type_results, video_results