File size: 4,267 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
from PIL import Image
import torch


def convert_img(img):
    """Converts (H, W, C) numpy.ndarray to (C, W, H) format
    """
    if len(img.shape) == 3:
        img = img.transpose(2, 0, 1)
    if len(img.shape) == 2:
        img = np.expand_dims(img, 0)
    return img


class ClipToTensor(object):
    """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
    to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
    """

    def __init__(self, channel_nb=3, div_255=True, numpy=False):
        self.channel_nb = channel_nb
        self.div_255 = div_255
        self.numpy = numpy

    def __call__(self, clip):
        """
        Args: clip (list of numpy.ndarray): clip (list of images)
        to be converted to tensor.
        """
        # Retrieve shape
        if isinstance(clip[0], np.ndarray):
            h, w, ch = clip[0].shape
            assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format(
                ch)
        elif isinstance(clip[0], Image.Image):
            w, h = clip[0].size
        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image\
            but got list of {0}'.format(type(clip[0])))

        np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])

        # Convert
        for img_idx, img in enumerate(clip):
            if isinstance(img, np.ndarray):
                pass
            elif isinstance(img, Image.Image):
                img = np.array(img, copy=False)
            else:
                raise TypeError('Expected numpy.ndarray or PIL.Image\
                but got list of {0}'.format(type(clip[0])))
            img = convert_img(img)
            np_clip[:, img_idx, :, :] = img
        if self.numpy:
            if self.div_255:
                np_clip = np_clip / 255.0
            return np_clip

        else:
            tensor_clip = torch.from_numpy(np_clip)

            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(tensor_clip, 255)
            return tensor_clip


# Note this norms data to -1/1
class ClipToTensor_K(object):
    """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
    to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
    """

    def __init__(self, channel_nb=3, div_255=True, numpy=False):
        self.channel_nb = channel_nb
        self.div_255 = div_255
        self.numpy = numpy

    def __call__(self, clip):
        """
        Args: clip (list of numpy.ndarray): clip (list of images)
        to be converted to tensor.
        """
        # Retrieve shape
        if isinstance(clip[0], np.ndarray):
            h, w, ch = clip[0].shape
            assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format(
                ch)
        elif isinstance(clip[0], Image.Image):
            w, h = clip[0].size
        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image\
            but got list of {0}'.format(type(clip[0])))

        np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])

        # Convert
        for img_idx, img in enumerate(clip):
            if isinstance(img, np.ndarray):
                pass
            elif isinstance(img, Image.Image):
                img = np.array(img, copy=False)
            else:
                raise TypeError('Expected numpy.ndarray or PIL.Image\
                but got list of {0}'.format(type(clip[0])))
            img = convert_img(img)
            np_clip[:, img_idx, :, :] = img
        if self.numpy:
            if self.div_255:
                np_clip = (np_clip - 127.5) / 127.5
            return np_clip

        else:
            tensor_clip = torch.from_numpy(np_clip)

            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(torch.sub(tensor_clip, 127.5), 127.5)
            return tensor_clip


class ToTensor(object):
    """Converts numpy array to tensor
    """

    def __call__(self, array):
        tensor = torch.from_numpy(array)
        return tensor