Spaces:
Runtime error
Runtime error
File size: 5,927 Bytes
04fbff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import torch
import torch.nn as nn
from vbench.third_party.amt.utils.flow_utils import warp
from vbench.third_party.amt.networks.blocks.ifrnet import (
convrelu, resize,
ResBlock,
)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.pyramid1 = nn.Sequential(
convrelu(3, 32, 3, 2, 1),
convrelu(32, 32, 3, 1, 1)
)
self.pyramid2 = nn.Sequential(
convrelu(32, 48, 3, 2, 1),
convrelu(48, 48, 3, 1, 1)
)
self.pyramid3 = nn.Sequential(
convrelu(48, 72, 3, 2, 1),
convrelu(72, 72, 3, 1, 1)
)
self.pyramid4 = nn.Sequential(
convrelu(72, 96, 3, 2, 1),
convrelu(96, 96, 3, 1, 1)
)
def forward(self, img):
f1 = self.pyramid1(img)
f2 = self.pyramid2(f1)
f3 = self.pyramid3(f2)
f4 = self.pyramid4(f3)
return f1, f2, f3, f4
class Decoder4(nn.Module):
def __init__(self):
super(Decoder4, self).__init__()
self.convblock = nn.Sequential(
convrelu(192+1, 192),
ResBlock(192, 32),
nn.ConvTranspose2d(192, 76, 4, 2, 1, bias=True)
)
def forward(self, f0, f1, embt):
b, c, h, w = f0.shape
embt = embt.repeat(1, 1, h, w)
f_in = torch.cat([f0, f1, embt], 1)
f_out = self.convblock(f_in)
return f_out
class Decoder3(nn.Module):
def __init__(self):
super(Decoder3, self).__init__()
self.convblock = nn.Sequential(
convrelu(220, 216),
ResBlock(216, 32),
nn.ConvTranspose2d(216, 52, 4, 2, 1, bias=True)
)
def forward(self, ft_, f0, f1, up_flow0, up_flow1):
f0_warp = warp(f0, up_flow0)
f1_warp = warp(f1, up_flow1)
f_in = torch.cat([ft_, f0_warp, f1_warp, up_flow0, up_flow1], 1)
f_out = self.convblock(f_in)
return f_out
class Decoder2(nn.Module):
def __init__(self):
super(Decoder2, self).__init__()
self.convblock = nn.Sequential(
convrelu(148, 144),
ResBlock(144, 32),
nn.ConvTranspose2d(144, 36, 4, 2, 1, bias=True)
)
def forward(self, ft_, f0, f1, up_flow0, up_flow1):
f0_warp = warp(f0, up_flow0)
f1_warp = warp(f1, up_flow1)
f_in = torch.cat([ft_, f0_warp, f1_warp, up_flow0, up_flow1], 1)
f_out = self.convblock(f_in)
return f_out
class Decoder1(nn.Module):
def __init__(self):
super(Decoder1, self).__init__()
self.convblock = nn.Sequential(
convrelu(100, 96),
ResBlock(96, 32),
nn.ConvTranspose2d(96, 8, 4, 2, 1, bias=True)
)
def forward(self, ft_, f0, f1, up_flow0, up_flow1):
f0_warp = warp(f0, up_flow0)
f1_warp = warp(f1, up_flow1)
f_in = torch.cat([ft_, f0_warp, f1_warp, up_flow0, up_flow1], 1)
f_out = self.convblock(f_in)
return f_out
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.encoder = Encoder()
self.decoder4 = Decoder4()
self.decoder3 = Decoder3()
self.decoder2 = Decoder2()
self.decoder1 = Decoder1()
def forward(self, img0, img1, embt, scale_factor=1.0, eval=False, **kwargs):
mean_ = torch.cat([img0, img1], 2).mean(1, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
img0 = img0 - mean_
img1 = img1 - mean_
img0_ = resize(img0, scale_factor) if scale_factor != 1.0 else img0
img1_ = resize(img1, scale_factor) if scale_factor != 1.0 else img1
f0_1, f0_2, f0_3, f0_4 = self.encoder(img0_)
f1_1, f1_2, f1_3, f1_4 = self.encoder(img1_)
out4 = self.decoder4(f0_4, f1_4, embt)
up_flow0_4 = out4[:, 0:2]
up_flow1_4 = out4[:, 2:4]
ft_3_ = out4[:, 4:]
out3 = self.decoder3(ft_3_, f0_3, f1_3, up_flow0_4, up_flow1_4)
up_flow0_3 = out3[:, 0:2] + 2.0 * resize(up_flow0_4, scale_factor=2.0)
up_flow1_3 = out3[:, 2:4] + 2.0 * resize(up_flow1_4, scale_factor=2.0)
ft_2_ = out3[:, 4:]
out2 = self.decoder2(ft_2_, f0_2, f1_2, up_flow0_3, up_flow1_3)
up_flow0_2 = out2[:, 0:2] + 2.0 * resize(up_flow0_3, scale_factor=2.0)
up_flow1_2 = out2[:, 2:4] + 2.0 * resize(up_flow1_3, scale_factor=2.0)
ft_1_ = out2[:, 4:]
out1 = self.decoder1(ft_1_, f0_1, f1_1, up_flow0_2, up_flow1_2)
up_flow0_1 = out1[:, 0:2] + 2.0 * resize(up_flow0_2, scale_factor=2.0)
up_flow1_1 = out1[:, 2:4] + 2.0 * resize(up_flow1_2, scale_factor=2.0)
up_mask_1 = torch.sigmoid(out1[:, 4:5])
up_res_1 = out1[:, 5:]
if scale_factor != 1.0:
up_flow0_1 = resize(up_flow0_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
up_flow1_1 = resize(up_flow1_1, scale_factor=(1.0/scale_factor)) * (1.0/scale_factor)
up_mask_1 = resize(up_mask_1, scale_factor=(1.0/scale_factor))
up_res_1 = resize(up_res_1, scale_factor=(1.0/scale_factor))
img0_warp = warp(img0, up_flow0_1)
img1_warp = warp(img1, up_flow1_1)
imgt_merge = up_mask_1 * img0_warp + (1 - up_mask_1) * img1_warp + mean_
imgt_pred = imgt_merge + up_res_1
imgt_pred = torch.clamp(imgt_pred, 0, 1)
if eval:
return { 'imgt_pred': imgt_pred, }
else:
return {
'imgt_pred': imgt_pred,
'flow0_pred': [up_flow0_1, up_flow0_2, up_flow0_3, up_flow0_4],
'flow1_pred': [up_flow1_1, up_flow1_2, up_flow1_3, up_flow1_4],
'ft_pred': [ft_1_, ft_2_, ft_3_],
'img0_warp': img0_warp,
'img1_warp': img1_warp
}
|