File size: 7,453 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


class Loss(nn.Module):
    def __init__(self, loss_weight, keys, mapping=None) -> None:
        '''
            mapping: map the kwargs keys into desired ones.
        '''
        super().__init__()
        self.loss_weight = loss_weight
        self.keys = keys
        self.mapping = mapping
        if isinstance(mapping, dict):
            self.mapping = {k: v for k, v in mapping if v in keys}

    
    def forward(self, **kwargs):
        params = {k: v for k, v in kwargs.items() if k in self.keys}
        if self.mapping is not None:
            for k, v in kwargs.items(): 
                if self.mapping.get(k) is not None: 
                    params[self.mapping[k]] = v 
        
        return self._forward(**params) * self.loss_weight

    def _forward(self, **kwargs):
        pass


class CharbonnierLoss(Loss):
    def __init__(self, loss_weight, keys) -> None:
        super().__init__(loss_weight, keys)
        
    def _forward(self, imgt_pred, imgt):    
        diff = imgt_pred - imgt
        loss = ((diff ** 2 + 1e-6) ** 0.5).mean()
        return loss


class AdaCharbonnierLoss(Loss):
    def __init__(self, loss_weight, keys) -> None:
        super().__init__(loss_weight, keys)
        
    def _forward(self, imgt_pred, imgt, weight):   
        alpha = weight / 2
        epsilon = 10 ** (-(10 * weight - 1) / 3)

        diff = imgt_pred - imgt
        loss = ((diff ** 2 + epsilon ** 2) ** alpha).mean()
        return loss
  
  
class TernaryLoss(Loss):
    def __init__(self, loss_weight, keys, patch_size=7):
        super().__init__(loss_weight, keys)
        self.patch_size = patch_size
        out_channels = patch_size * patch_size
        self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
        self.w = np.transpose(self.w, (3, 2, 0, 1))
        self.w = torch.tensor(self.w, dtype=torch.float32)

    def transform(self, tensor):
        self.w = self.w.to(tensor.device)
        tensor_ = tensor.mean(dim=1, keepdim=True)
        patches = F.conv2d(tensor_, self.w, padding=self.patch_size//2, bias=None)
        loc_diff = patches - tensor_
        loc_diff_norm = loc_diff / torch.sqrt(0.81 + loc_diff ** 2)
        return loc_diff_norm

    def valid_mask(self, tensor):
        padding = self.patch_size//2
        b, c, h, w = tensor.size()
        inner = torch.ones(b, 1, h - 2 * padding, w - 2 * padding).type_as(tensor)
        mask = F.pad(inner, [padding] * 4)
        return mask
  
    def _forward(self, imgt_pred, imgt):
        loc_diff_x = self.transform(imgt_pred)
        loc_diff_y = self.transform(imgt)
        diff = loc_diff_x - loc_diff_y.detach()
        dist = (diff ** 2 / (0.1 + diff ** 2)).mean(dim=1, keepdim=True)
        mask = self.valid_mask(imgt_pred)
        loss = (dist * mask).mean()
        return loss
 

class GeometryLoss(Loss):
    def __init__(self, loss_weight, keys, patch_size=3):
        super().__init__(loss_weight, keys)
        self.patch_size = patch_size
        out_channels = patch_size * patch_size
        self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
        self.w = np.transpose(self.w, (3, 2, 0, 1))
        self.w = torch.tensor(self.w).float()

    def transform(self, tensor):
        b, c, h, w = tensor.size()
        self.w = self.w.to(tensor.device)
        tensor_ = tensor.reshape(b*c, 1, h, w)
        patches = F.conv2d(tensor_, self.w, padding=self.patch_size // 2, bias=None)
        loc_diff = patches - tensor_
        loc_diff_ = loc_diff.reshape(b, c*(self.patch_size ** 2), h, w)
        loc_diff_norm = loc_diff_ / torch.sqrt(0.81 + loc_diff_ ** 2)
        return loc_diff_norm

    def valid_mask(self, tensor):
        padding = self.patch_size // 2
        b, c, h, w = tensor.size()
        inner = torch.ones(b, 1, h - 2 * padding, w - 2 * padding).type_as(tensor)
        mask = F.pad(inner, [padding] * 4)
        return mask

    def _forward(self, ft_pred, ft_gt):
        loss = 0.
        for pred, gt in zip(ft_pred, ft_gt):
            loc_diff_x = self.transform(pred)
            loc_diff_y = self.transform(gt)
            diff = loc_diff_x - loc_diff_y
            dist = (diff ** 2 / (0.1 + diff ** 2)).mean(dim=1, keepdim=True)
            mask = self.valid_mask(pred)
            loss = loss + (dist * mask).mean()
        return loss
    

class IFRFlowLoss(Loss):
    def __init__(self, loss_weight, keys, beta=0.3) -> None:
        super().__init__(loss_weight, keys)
        self.beta = beta
        self.ada_cb_loss = AdaCharbonnierLoss(1.0, ['imgt_pred', 'imgt', 'weight'])
    
    def _forward(self, flow0_pred, flow1_pred, flow):
        
        robust_weight0 = self.get_robust_weight(flow0_pred[0], flow[:, 0:2])
        robust_weight1 = self.get_robust_weight(flow1_pred[0], flow[:, 2:4])
        loss = 0
        for lvl in range(1, len(flow0_pred)):
            scale_factor = 2**lvl
            loss = loss + self.ada_cb_loss(**{
                'imgt_pred': self.resize(flow0_pred[lvl], scale_factor),
                'imgt': flow[:, 0:2],
                'weight': robust_weight0
            })
            loss = loss + self.ada_cb_loss(**{
                'imgt_pred': self.resize(flow1_pred[lvl], scale_factor),
                'imgt': flow[:, 2:4],
                'weight': robust_weight1
            })
        return loss
    
    def resize(self, x, scale_factor):
        return scale_factor * F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)
    
    def get_robust_weight(self, flow_pred, flow_gt):
        epe = ((flow_pred.detach() - flow_gt) ** 2).sum(dim=1, keepdim=True) ** 0.5
        robust_weight = torch.exp(-self.beta * epe)
        return robust_weight


class MultipleFlowLoss(Loss):
    def __init__(self, loss_weight, keys, beta=0.3) -> None:
        super().__init__(loss_weight, keys)
        self.beta = beta
        self.ada_cb_loss = AdaCharbonnierLoss(1.0, ['imgt_pred', 'imgt', 'weight'])
    
    def _forward(self, flow0_pred, flow1_pred, flow):
        
        robust_weight0 = self.get_mutli_flow_robust_weight(flow0_pred[0], flow[:, 0:2])
        robust_weight1 = self.get_mutli_flow_robust_weight(flow1_pred[0], flow[:, 2:4])
        loss = 0
        for lvl in range(1, len(flow0_pred)):
            scale_factor = 2**lvl
            loss = loss + self.ada_cb_loss(**{
                'imgt_pred': self.resize(flow0_pred[lvl], scale_factor),
                'imgt': flow[:, 0:2],
                'weight': robust_weight0
            })
            loss = loss + self.ada_cb_loss(**{
                'imgt_pred': self.resize(flow1_pred[lvl], scale_factor),
                'imgt': flow[:, 2:4],
                'weight': robust_weight1
            })
        return loss
    
    def resize(self, x, scale_factor):
        return scale_factor * F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False)

    def get_mutli_flow_robust_weight(self, flow_pred, flow_gt):
        b, num_flows, c, h, w = flow_pred.shape
        flow_pred = flow_pred.view(b, num_flows, c, h, w)
        flow_gt = flow_gt.repeat(1, num_flows, 1, 1).view(b, num_flows, c, h, w)
        epe = ((flow_pred.detach() - flow_gt) ** 2).sum(dim=2, keepdim=True).max(1)[0] ** 0.5
        robust_weight = torch.exp(-self.beta * epe)
        return robust_weight