Spaces:
Runtime error
Runtime error
File size: 6,871 Bytes
04fbff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Development for evaluation and training
- [Datasets](#Datasets)
- [Pretrained Models](#pretrained-models)
- [Evaluation](#evaluation)
- [Training](#training)
## Datasets<p id="Datasets"></p>
First, please prepare standard datasets for evaluation and training.
We present most of prevailing datasets in video frame interpolation, though some are not used in our project. Hope this collection could help your research.
<table>
<thead>
<tr>
<th> Dataset </th>
<th> :link: Source </th>
<th> Train/Eval </th>
<th> Arbitrary/Fixed </th>
</tr>
</thead>
<tbody>
<tr>
<td>Vimeo90k</td>
<th><a href="http://toflow.csail.mit.edu/">ToFlow (IJCV 2019)</a></th>
<th>Both</th>
<th>Fixed</th>
</tr>
<tr>
<td>ATD-12K</td>
<th><a href="https://github.com/lisiyao21/AnimeInterp">AnimeInterp (CVPR 2021)</a></th>
<th>Both</th>
<th>Fixed</th>
</tr>
<tr>
<td>SNU-FILM</td>
<th><a href="https://myungsub.github.io/CAIN/">CAIN (AAAI 2021)</a></th>
<th>Eval</th>
<th>Fixed</th>
</tr>
<tr>
<td>UCF101</td>
<th><a href="https://drive.google.com/file/d/0B7EVK8r0v71pdHBNdXB6TE1wSTQ/view?resourcekey=0-r6ihCy20h3kbgZ3ZdimPiA">Google Driver</a></th>
<th>Eval</th>
<th>Fixed</th>
</tr>
<tr>
<td>HD</td>
<th><a href="https://github.com/baowenbo/MEMC-Net">MEMC-Net (TPAMI 2018)</a>/<a href="https://github.com/baowenbo/MEMC-Net">Google Driver</a></th>
<th>Eval</th>
<th>Fixed</th>
</tr>
<tr>
<td>Xiph-2k/-4k</td>
<th><a href="https://github.com/sniklaus/softmax-splatting/blob/master/benchmark_xiph.py">SoftSplat (CVPR 2020)</a></th>
<th>Eval</th>
<th>Fixed</th>
</tr>
<tr>
<td>MiddleBury</td>
<th><a href="https://vision.middlebury.edu/flow/data/">MiddleBury</a></th>
<th>Eval</th>
<th>Fixed</th>
</tr>
<tr>
<td>GoPro</td>
<th><a href="https://seungjunnah.github.io/Datasets/gopro">GoPro</a></th>
<th>Both</th>
<th>Arbitrary</th>
</tr>
<tr>
<td>Adobe240fps</td>
<th><a href="http://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring">DBN (CVPR 2017)</a></th>
<th>Both</th>
<th>Arbitrary</th>
</tr>
<tr>
<td>X4K1000FPS</td>
<th><a href="https://github.com/JihyongOh/XVFI">XVFI (ICCV 2021)</a></th>
<th>Both</th>
<th>Arbitrary</th>
</tr>
</tbody>
</table>
## Pretrained Models
<p id="Pretrained"></p>
<table>
<thead>
<tr>
<th> Dataset </th>
<th> :link: Download Links </th>
<th> Config file </th>
<th> Trained on </th>
<th> Arbitrary/Fixed </th>
</tr>
</thead>
<tbody>
<tr>
<td>AMT-S</td>
<th> [<a href="https://drive.google.com/file/d/1WmOKmQmd6pnLpID8EpUe-TddFpJuavrL/view?usp=share_link">Google Driver</a>][<a href="https://pan.baidu.com/s/1yGaNLeb9TG5-81t0skrOUA?pwd=f66n">Baidu Cloud</a>]</th>
<th> [<a href="../cfgs/AMT-S.yaml">cfgs/AMT-S</a>] </th>
<th>Vimeo90k</th>
<th>Fixed</th>
</tr>
<tr>
<td>AMT-L</td>
<th>[<a href="https://drive.google.com/file/d/1UyhYpAQLXMjFA55rlFZ0kdiSVTL7oU-z/view?usp=share_link">Google Driver</a>][<a href="https://pan.baidu.com/s/1qI4fBgS405Bd4Wn1R3Gbeg?pwd=nbne">Baidu Cloud</a>]</th>
<th> [<a href="../cfgs/AMT-L.yaml">cfgs/AMT-L</a>] </th>
<th>Vimeo90k</th>
<th>Fixed</th>
</tr>
<tr>
<td>AMT-G</td>
<th>[<a href="https://drive.google.com/file/d/1yieLtKh4ei3gOrLN1LhKSP_9157Q-mtP/view?usp=share_link">Google Driver</a>][<a href="https://pan.baidu.com/s/1AjmQVziQut1bXgQnDcDKvA?pwd=caf6">Baidu Cloud</a>]</th>
<th> [<a href="../cfgs/AMT-G.yaml">cfgs/AMT-G</a>] </th>
<th>Vimeo90k</th>
<th>Fixed</th>
</tr>
<tr>
<td>AMT-S</td>
<th>[<a href="https://drive.google.com/file/d/1f1xAF0EDm-rjDdny8_aLyeedfM0QL4-C/view?usp=share_link">Google Driver</a>][<a href="https://pan.baidu.com/s/1eZtoULyduQM8AkXeYEBOEw?pwd=8hy3">Baidu Cloud</a>]</th>
<th> [<a href="../cfgs/AMT-S_gopro.yaml">cfgs/AMT-S_gopro</a>] </th>
<th>GoPro</th>
<th>Arbitrary</th>
</tr>
</tbody>
</table>
## Evaluation
Before evaluation, you should:
1. Check the dataroot is organized as follows:
```shell
./data
βββ Adobe240
β βββ original_high_fps_videos
β βββ test_frames # using ffmpeg to extract 240 fps frames from `original_high_fps_videos`
βββ GOPRO
β βββ test
β βββ train
βββ SNU_FILM
β βββ GOPRO_test
β βββ test-easy.txt
β βββ test-extreme.txt
β βββ test-hard.txt
β βββ test-medium.txt
β βββ YouTube_test
βββ ucf101_interp_ours
β βββ 1
β βββ 1001
β βββ ...
βββ vimeo_triplet
βββ readme.txt
βββ sequences
βββ tri_testlist.txt
βββ tri_trainlist.txt
```
2. Download the provided [pretrained models](#pretrained-models).
Then, you can perform evaluation as follows:
+ Run all benchmarks for fixed-time models.
```shell
sh ./scripts/benchmark_fixed.sh [CFG] [CKPT_PATH]
## e.g.
sh ./scripts/benchmark_fixed.sh cfgs/AMT-S.yaml pretrained/amt-s.pth
```
+ Run all benchmarks for arbitrary-time models.
```shell
sh ./scripts/benchmark_arbitrary.sh [CFG] [CKPT_PATH]
## e.g.
sh ./scripts/benchmark_arbitrary.sh cfgs/AMT-S.yaml pretrained/gopro_amt-s.pth
```
+ Run a single benchmark for fixed-time models. *You can custom data paths in this case*.
```shell
python [BENCHMARK] -c [CFG] -p [CKPT_PATH] -r [DATAROOT]
## e.g.
python benchmarks/vimeo90k.py -c cfgs/AMT-S.yaml -p pretrained/amt-s.pth -r data/vimeo_triplet
```
+ Run the inference speed & model size comparisons using:
```shell
python speed_parameters.py -c [CFG]
## e.g.
python speed_parameters.py -c cfgs/AMT-S.yaml
```
## Training
Before training, please first prepare the optical flows (which are used for supervision).
We need to install `cupy` first before flow generation:
```shell
conda activate amt # satisfying `requirement.txt`
conda install -c conda-forge cupy
```
After installing `cupy`, we can generate optical flows by the following command:
```shell
python flow_generation/gen_flow.py -r [DATA_ROOT]
## e.g.
python flow_generation/gen_flow.py -r data/vimeo_triplet
```
After obtaining the optical flow of the training data,
run the following commands for training (DDP mode):
```shell
sh ./scripts/train.sh [NUM_GPU] [CFG] [MASTER_PORT]
## e.g.
sh ./scripts/train.sh 2 cfgs/AMT-S.yaml 14514
```
Our training configuration files are provided in [`cfgs`](../cfgs). Please carefully check the `dataset_dir` is suitable for you.
Note:
- If you intend to turn off DDP training, you can switch the key `distributed` from `true`
to `false` in the config file.
- If you do not use wandb, you can switch the key `logger.use_wandb` from `true`
to `false` in the config file. |