Spaces:
Runtime error
Runtime error
File size: 7,400 Bytes
04fbff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
'''
This code is partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet).
'''
import os
import cv2
import torch
import random
import numpy as np
from torch.utils.data import Dataset
from utils.utils import read
def random_resize(img0, imgt, img1, flow, p=0.1):
if random.uniform(0, 1) < p:
img0 = cv2.resize(img0, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
imgt = cv2.resize(imgt, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
img1 = cv2.resize(img1, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
flow = cv2.resize(flow, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR) * 2.0
return img0, imgt, img1, flow
def random_crop(img0, imgt, img1, flow, crop_size=(224, 224)):
h, w = crop_size[0], crop_size[1]
ih, iw, _ = img0.shape
x = np.random.randint(0, ih-h+1)
y = np.random.randint(0, iw-w+1)
img0 = img0[x:x+h, y:y+w, :]
imgt = imgt[x:x+h, y:y+w, :]
img1 = img1[x:x+h, y:y+w, :]
flow = flow[x:x+h, y:y+w, :]
return img0, imgt, img1, flow
def random_reverse_channel(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, :, ::-1]
imgt = imgt[:, :, ::-1]
img1 = img1[:, :, ::-1]
return img0, imgt, img1, flow
def random_vertical_flip(img0, imgt, img1, flow, p=0.3):
if random.uniform(0, 1) < p:
img0 = img0[::-1]
imgt = imgt[::-1]
img1 = img1[::-1]
flow = flow[::-1]
flow = np.concatenate((flow[:, :, 0:1], -flow[:, :, 1:2], flow[:, :, 2:3], -flow[:, :, 3:4]), 2)
return img0, imgt, img1, flow
def random_horizontal_flip(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
img0 = img0[:, ::-1]
imgt = imgt[:, ::-1]
img1 = img1[:, ::-1]
flow = flow[:, ::-1]
flow = np.concatenate((-flow[:, :, 0:1], flow[:, :, 1:2], -flow[:, :, 2:3], flow[:, :, 3:4]), 2)
return img0, imgt, img1, flow
def random_rotate(img0, imgt, img1, flow, p=0.05):
if random.uniform(0, 1) < p:
img0 = img0.transpose((1, 0, 2))
imgt = imgt.transpose((1, 0, 2))
img1 = img1.transpose((1, 0, 2))
flow = flow.transpose((1, 0, 2))
flow = np.concatenate((flow[:, :, 1:2], flow[:, :, 0:1], flow[:, :, 3:4], flow[:, :, 2:3]), 2)
return img0, imgt, img1, flow
def random_reverse_time(img0, imgt, img1, flow, p=0.5):
if random.uniform(0, 1) < p:
tmp = img1
img1 = img0
img0 = tmp
flow = np.concatenate((flow[:, :, 2:4], flow[:, :, 0:2]), 2)
return img0, imgt, img1, flow
class Vimeo90K_Train_Dataset(Dataset):
def __init__(self,
dataset_dir='data/vimeo_triplet',
flow_dir=None,
augment=True,
crop_size=(224, 224)):
self.dataset_dir = dataset_dir
self.augment = augment
self.crop_size = crop_size
self.img0_list = []
self.imgt_list = []
self.img1_list = []
self.flow_t0_list = []
self.flow_t1_list = []
if flow_dir is None:
flow_dir = 'flow'
with open(os.path.join(dataset_dir, 'tri_trainlist.txt'), 'r') as f:
for i in f:
name = str(i).strip()
if(len(name) <= 1):
continue
self.img0_list.append(os.path.join(dataset_dir, 'sequences', name, 'im1.png'))
self.imgt_list.append(os.path.join(dataset_dir, 'sequences', name, 'im2.png'))
self.img1_list.append(os.path.join(dataset_dir, 'sequences', name, 'im3.png'))
self.flow_t0_list.append(os.path.join(dataset_dir, flow_dir, name, 'flow_t0.flo'))
self.flow_t1_list.append(os.path.join(dataset_dir, flow_dir, name, 'flow_t1.flo'))
def __len__(self):
return len(self.imgt_list)
def __getitem__(self, idx):
img0 = read(self.img0_list[idx])
imgt = read(self.imgt_list[idx])
img1 = read(self.img1_list[idx])
flow_t0 = read(self.flow_t0_list[idx])
flow_t1 = read(self.flow_t1_list[idx])
flow = np.concatenate((flow_t0, flow_t1), 2).astype(np.float64)
if self.augment == True:
img0, imgt, img1, flow = random_resize(img0, imgt, img1, flow, p=0.1)
img0, imgt, img1, flow = random_crop(img0, imgt, img1, flow, crop_size=self.crop_size)
img0, imgt, img1, flow = random_reverse_channel(img0, imgt, img1, flow, p=0.5)
img0, imgt, img1, flow = random_vertical_flip(img0, imgt, img1, flow, p=0.3)
img0, imgt, img1, flow = random_horizontal_flip(img0, imgt, img1, flow, p=0.5)
img0, imgt, img1, flow = random_rotate(img0, imgt, img1, flow, p=0.05)
img0, imgt, img1, flow = random_reverse_time(img0, imgt, img1, flow, p=0.5)
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
imgt = torch.from_numpy(imgt.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
flow = torch.from_numpy(flow.transpose((2, 0, 1)).astype(np.float32))
embt = torch.from_numpy(np.array(1/2).reshape(1, 1, 1).astype(np.float32))
return {'img0': img0.float(), 'imgt': imgt.float(), 'img1': img1.float(), 'flow': flow.float(), 'embt': embt}
class Vimeo90K_Test_Dataset(Dataset):
def __init__(self, dataset_dir='data/vimeo_triplet'):
self.dataset_dir = dataset_dir
self.img0_list = []
self.imgt_list = []
self.img1_list = []
self.flow_t0_list = []
self.flow_t1_list = []
with open(os.path.join(dataset_dir, 'tri_testlist.txt'), 'r') as f:
for i in f:
name = str(i).strip()
if(len(name) <= 1):
continue
self.img0_list.append(os.path.join(dataset_dir, 'sequences', name, 'im1.png'))
self.imgt_list.append(os.path.join(dataset_dir, 'sequences', name, 'im2.png'))
self.img1_list.append(os.path.join(dataset_dir, 'sequences', name, 'im3.png'))
self.flow_t0_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t0.flo'))
self.flow_t1_list.append(os.path.join(dataset_dir, 'flow', name, 'flow_t1.flo'))
def __len__(self):
return len(self.imgt_list)
def __getitem__(self, idx):
img0 = read(self.img0_list[idx])
imgt = read(self.imgt_list[idx])
img1 = read(self.img1_list[idx])
flow_t0 = read(self.flow_t0_list[idx])
flow_t1 = read(self.flow_t1_list[idx])
flow = np.concatenate((flow_t0, flow_t1), 2)
img0 = torch.from_numpy(img0.transpose((2, 0, 1)).astype(np.float32) / 255.0)
imgt = torch.from_numpy(imgt.transpose((2, 0, 1)).astype(np.float32) / 255.0)
img1 = torch.from_numpy(img1.transpose((2, 0, 1)).astype(np.float32) / 255.0)
flow = torch.from_numpy(flow.transpose((2, 0, 1)).astype(np.float32))
embt = torch.from_numpy(np.array(1/2).reshape(1, 1, 1).astype(np.float32))
return {'img0': img0.float(),
'imgt': imgt.float(),
'img1': img1.float(),
'flow': flow.float(),
'embt': embt}
|