File size: 8,472 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
'''
    This code is partially borrowed from IFRNet (https://github.com/ltkong218/IFRNet). 
    In the consideration of the difficulty in flow supervision generation, we abort 
    flow loss in the 8x case.
'''
import os
import cv2
import torch
import random
import numpy as np
from torch.utils.data import Dataset
from utils.utils import read, img2tensor

def random_resize_woflow(img0, imgt, img1, p=0.1):
    if random.uniform(0, 1) < p:
        img0 = cv2.resize(img0, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
        imgt = cv2.resize(imgt, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
        img1 = cv2.resize(img1, dsize=None, fx=2.0, fy=2.0, interpolation=cv2.INTER_LINEAR)
    return img0, imgt, img1

def random_crop_woflow(img0, imgt, img1, crop_size=(224, 224)):
    h, w = crop_size[0], crop_size[1]
    ih, iw, _ = img0.shape
    x = np.random.randint(0, ih-h+1)
    y = np.random.randint(0, iw-w+1)
    img0 = img0[x: x + h, y : y + w, :]
    imgt = imgt[x: x + h, y : y + w, :]
    img1 = img1[x: x + h, y : y + w, :]
    return img0, imgt, img1

def center_crop_woflow(img0, imgt, img1, crop_size=(512, 512)):
    h, w = crop_size[0], crop_size[1]
    ih, iw, _ = img0.shape
    img0 = img0[ih // 2 - h // 2: ih // 2 + h // 2, iw // 2 - w // 2: iw // 2 +  w // 2, :]
    imgt = imgt[ih // 2 - h // 2: ih // 2 + h // 2, iw // 2 - w // 2: iw // 2 +  w // 2, :]
    img1 = img1[ih // 2 - h // 2: ih // 2 + h // 2, iw // 2 - w // 2: iw // 2 +  w // 2, :]
    return img0, imgt, img1

def random_reverse_channel_woflow(img0, imgt, img1, p=0.5):
    if random.uniform(0, 1) < p:
        img0 = img0[:, :, ::-1]
        imgt = imgt[:, :, ::-1]
        img1 = img1[:, :, ::-1]
    return img0, imgt, img1

def random_vertical_flip_woflow(img0, imgt, img1, p=0.3):
    if random.uniform(0, 1) < p:
        img0 = img0[::-1]
        imgt = imgt[::-1]
        img1 = img1[::-1]
    return img0, imgt, img1

def random_horizontal_flip_woflow(img0, imgt, img1, p=0.5):
    if random.uniform(0, 1) < p:
        img0 = img0[:, ::-1]
        imgt = imgt[:, ::-1]
        img1 = img1[:, ::-1]
    return img0, imgt, img1

def random_rotate_woflow(img0, imgt, img1, p=0.05):
    if random.uniform(0, 1) < p:
        img0 = img0.transpose((1, 0, 2))
        imgt = imgt.transpose((1, 0, 2))
        img1 = img1.transpose((1, 0, 2))
    return img0, imgt, img1

def random_reverse_time_woflow(img0, imgt, img1, embt, p=0.5):
    if random.uniform(0, 1) < p:
        tmp = img1
        img1 = img0
        img0 = tmp
    embt = 1 - embt
    return img0, imgt, img1, embt

class GoPro_Train_Dataset(Dataset):
    def __init__(self, dataset_dir='data/GOPRO', interFrames=7, augment=True):
        self.dataset_dir = dataset_dir + '/train'
        self.interFrames = interFrames
        self.augment = augment
        self.setLength = interFrames + 2
        video_list = [
            'GOPR0372_07_00', 'GOPR0374_11_01', 'GOPR0378_13_00', 'GOPR0384_11_01', 
            'GOPR0384_11_04', 'GOPR0477_11_00', 'GOPR0868_11_02', 'GOPR0884_11_00', 
            'GOPR0372_07_01', 'GOPR0374_11_02', 'GOPR0379_11_00', 'GOPR0384_11_02', 
            'GOPR0385_11_00', 'GOPR0857_11_00', 'GOPR0871_11_01', 'GOPR0374_11_00', 
            'GOPR0374_11_03', 'GOPR0380_11_00', 'GOPR0384_11_03', 'GOPR0386_11_00', 
            'GOPR0868_11_01', 'GOPR0881_11_00']
        self.frames_list = []
        self.file_list = []
        for video in video_list:
            frames = sorted(os.listdir(os.path.join(self.dataset_dir, video)))
            n_sets = (len(frames) - self.setLength) // (interFrames+1)  + 1
            videoInputs = [frames[(interFrames + 1) * i: (interFrames + 1) * i + self.setLength
                                                        ] for i in range(n_sets)]
            videoInputs = [[os.path.join(video, f) for f in group] for group in videoInputs]
            self.file_list.extend(videoInputs)

    def __len__(self):
        return len(self.file_list) * self.interFrames

    def __getitem__(self, idx):
        clip_idx = idx // self.interFrames
        embt_idx = idx % self.interFrames
        imgpaths = [os.path.join(self.dataset_dir, fp) for fp in self.file_list[clip_idx]]
        pick_idxs = list(range(0, self.setLength, self.interFrames + 1))
        imgt_beg = self.setLength // 2 - self.interFrames // 2
        imgt_end = self.setLength // 2 + self.interFrames // 2 + self.interFrames % 2
        imgt_idx = list(range(imgt_beg, imgt_end)) 
        input_paths = [imgpaths[idx] for idx in pick_idxs]
        imgt_paths = [imgpaths[idx] for idx in imgt_idx]
        
        embt = torch.from_numpy(np.array((embt_idx  + 1) / (self.interFrames+1)
                                         ).reshape(1, 1, 1).astype(np.float32))
        img0 = np.array(read(input_paths[0]))
        imgt = np.array(read(imgt_paths[embt_idx]))
        img1 = np.array(read(input_paths[1]))

        if self.augment == True:
            img0, imgt, img1 = random_resize_woflow(img0, imgt, img1, p=0.1)
            img0, imgt, img1 = random_crop_woflow(img0, imgt, img1, crop_size=(224, 224))
            img0, imgt, img1 = random_reverse_channel_woflow(img0, imgt, img1, p=0.5)
            img0, imgt, img1 = random_vertical_flip_woflow(img0, imgt, img1, p=0.3)
            img0, imgt, img1 = random_horizontal_flip_woflow(img0, imgt, img1, p=0.5)
            img0, imgt, img1 = random_rotate_woflow(img0, imgt, img1, p=0.05)
            img0, imgt, img1, embt = random_reverse_time_woflow(img0, imgt, img1, 
                                                                embt=embt, p=0.5)
        else:
            img0, imgt, img1 = center_crop_woflow(img0, imgt, img1, crop_size=(512, 512))
            
        img0 = img2tensor(img0.copy()).squeeze(0)
        imgt = img2tensor(imgt.copy()).squeeze(0)
        img1 = img2tensor(img1.copy()).squeeze(0)
        
        return {'img0': img0.float(), 
                'imgt': imgt.float(), 
                'img1': img1.float(),  
                'embt': embt}

class GoPro_Test_Dataset(Dataset):
    def __init__(self, dataset_dir='data/GOPRO', interFrames=7):
        self.dataset_dir = dataset_dir + '/test'
        self.interFrames = interFrames
        self.setLength = interFrames + 2
        video_list = [
            'GOPR0384_11_00', 'GOPR0385_11_01', 'GOPR0410_11_00', 
            'GOPR0862_11_00', 'GOPR0869_11_00', 'GOPR0881_11_01', 
            'GOPR0384_11_05', 'GOPR0396_11_00', 'GOPR0854_11_00', 
            'GOPR0868_11_00', 'GOPR0871_11_00']
        self.frames_list = []
        self.file_list = []
        for video in video_list:
            frames = sorted(os.listdir(os.path.join(self.dataset_dir, video)))
            n_sets = (len(frames) - self.setLength)//(interFrames+1)  + 1
            videoInputs = [frames[(interFrames + 1) * i:(interFrames + 1) * i + self.setLength
                                                        ] for i in range(n_sets)]
            videoInputs = [[os.path.join(video, f) for f in group] for group in videoInputs]
            self.file_list.extend(videoInputs)

    def __len__(self):
        return len(self.file_list) * self.interFrames

    def __getitem__(self, idx):
        clip_idx = idx // self.interFrames
        embt_idx = idx % self.interFrames
        imgpaths = [os.path.join(self.dataset_dir, fp) for fp in self.file_list[clip_idx]]
        pick_idxs = list(range(0, self.setLength, self.interFrames + 1))
        imgt_beg = self.setLength // 2 - self.interFrames // 2
        imgt_end = self.setLength // 2 + self.interFrames // 2 + self.interFrames % 2
        imgt_idx = list(range(imgt_beg, imgt_end)) 
        input_paths = [imgpaths[idx] for idx in pick_idxs]
        imgt_paths = [imgpaths[idx] for idx in imgt_idx]

        img0 = np.array(read(input_paths[0]))
        imgt = np.array(read(imgt_paths[embt_idx]))
        img1 = np.array(read(input_paths[1]))

        img0, imgt, img1 = center_crop_woflow(img0, imgt, img1, crop_size=(512, 512))

        img0 = img2tensor(img0).squeeze(0)
        imgt = img2tensor(imgt).squeeze(0)
        img1 = img2tensor(img1).squeeze(0)
        
        embt = torch.from_numpy(np.array((embt_idx + 1) / (self.interFrames + 1)
                                         ).reshape(1, 1, 1).astype(np.float32))
        return {'img0': img0.float(), 
                'imgt': imgt.float(), 
                'img1': img1.float(),  
                'embt': embt}