Update app.py
Browse files
app.py
CHANGED
@@ -4,52 +4,12 @@ from PIL import Image, ImageDraw
|
|
4 |
import numpy as np
|
5 |
import colorsys
|
6 |
|
7 |
-
# Configuration pour HuggingFace Spaces
|
8 |
st.set_page_config(
|
9 |
page_title="Fraktur Detektion",
|
10 |
layout="wide",
|
11 |
initial_sidebar_state="collapsed"
|
12 |
)
|
13 |
|
14 |
-
# Script pour gérer les WebSockets
|
15 |
-
st.components.v1.html("""
|
16 |
-
<script>
|
17 |
-
// Fonction pour corriger la connexion WebSocket
|
18 |
-
function fixWebSocketConnection() {
|
19 |
-
const originalWebSocket = window.WebSocket;
|
20 |
-
window.WebSocket = function(url, protocols) {
|
21 |
-
if (url.includes('_stcore/stream')) {
|
22 |
-
const newUrl = new URL(url);
|
23 |
-
newUrl.pathname = '/_stcore/stream';
|
24 |
-
url = newUrl.toString();
|
25 |
-
}
|
26 |
-
return new originalWebSocket(url, protocols);
|
27 |
-
};
|
28 |
-
}
|
29 |
-
|
30 |
-
// Configuration du WebSocket pour Edge et autres navigateurs
|
31 |
-
if (window.WebSocket) {
|
32 |
-
fixWebSocketConnection();
|
33 |
-
|
34 |
-
// Gérer la reconnexion en cas d'erreur
|
35 |
-
window.addEventListener('load', function() {
|
36 |
-
const maxRetries = 5;
|
37 |
-
let retryCount = 0;
|
38 |
-
|
39 |
-
function tryConnection() {
|
40 |
-
if (retryCount < maxRetries) {
|
41 |
-
fixWebSocketConnection();
|
42 |
-
retryCount++;
|
43 |
-
setTimeout(tryConnection, 2000);
|
44 |
-
}
|
45 |
-
}
|
46 |
-
|
47 |
-
tryConnection();
|
48 |
-
});
|
49 |
-
}
|
50 |
-
</script>
|
51 |
-
""", height=0)
|
52 |
-
|
53 |
st.markdown("""
|
54 |
<style>
|
55 |
.stApp {
|
@@ -136,25 +96,6 @@ st.markdown("""
|
|
136 |
[data-testid="stExpander"], .element-container:has(>.stAlert) {
|
137 |
display: none !important;
|
138 |
}
|
139 |
-
|
140 |
-
/* Fix pour les iframes et WebSocket */
|
141 |
-
iframe {
|
142 |
-
display: block !important;
|
143 |
-
visibility: visible !important;
|
144 |
-
opacity: 1 !important;
|
145 |
-
}
|
146 |
-
|
147 |
-
.st-emotion-cache-1yiq2ps {
|
148 |
-
overflow: visible !important;
|
149 |
-
}
|
150 |
-
|
151 |
-
.st-emotion-cache-1dp5vir {
|
152 |
-
display: none !important;
|
153 |
-
}
|
154 |
-
|
155 |
-
.st-emotion-cache-r421ms {
|
156 |
-
z-index: 999999 !important;
|
157 |
-
}
|
158 |
</style>
|
159 |
""", unsafe_allow_html=True)
|
160 |
|
@@ -185,17 +126,21 @@ def create_heatmap_overlay(image, box, score):
|
|
185 |
x1, y1 = box['xmin'], box['ymin']
|
186 |
x2, y2 = box['xmax'], box['ymax']
|
187 |
|
|
|
188 |
if score > 0.8:
|
189 |
-
fill_color = (255, 0, 0, 100)
|
190 |
border_color = (255, 0, 0, 255)
|
191 |
elif score > 0.6:
|
192 |
-
fill_color = (255, 165, 0, 100)
|
193 |
border_color = (255, 165, 0, 255)
|
194 |
else:
|
195 |
-
fill_color = (255, 255, 0, 100)
|
196 |
border_color = (255, 255, 0, 255)
|
197 |
|
|
|
198 |
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
|
|
|
|
199 |
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
200 |
|
201 |
return overlay
|
@@ -207,16 +152,20 @@ def draw_boxes(image, predictions):
|
|
207 |
box = pred['box']
|
208 |
score = pred['score']
|
209 |
|
|
|
210 |
overlay = create_heatmap_overlay(image, box, score)
|
211 |
result_image = Image.alpha_composite(result_image, overlay)
|
212 |
|
|
|
213 |
draw = ImageDraw.Draw(result_image)
|
214 |
temp = 36.5 + (score * 2.5)
|
215 |
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
216 |
|
|
|
217 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
218 |
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
219 |
|
|
|
220 |
draw.text(
|
221 |
(box['xmin'], box['ymin']-20),
|
222 |
label,
|
@@ -226,99 +175,100 @@ def draw_boxes(image, predictions):
|
|
226 |
return result_image
|
227 |
|
228 |
def main():
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
label_visibility="visible"
|
243 |
-
)
|
244 |
-
with col2:
|
245 |
-
analyze_button = st.button("Analysieren")
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
with
|
267 |
-
st.write("
|
268 |
-
col1, col2 = st.columns(2)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
</
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
</
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
st.image(result_image, use_container_width=True)
|
317 |
-
else:
|
318 |
-
st.write("#### 🖼️ Röntgenbild")
|
319 |
-
st.image(image, use_container_width=True)
|
320 |
-
except Exception as e:
|
321 |
-
st.error(f"Ein Fehler ist aufgetreten: {str(e)}")
|
322 |
|
323 |
if __name__ == "__main__":
|
324 |
main()
|
|
|
4 |
import numpy as np
|
5 |
import colorsys
|
6 |
|
|
|
7 |
st.set_page_config(
|
8 |
page_title="Fraktur Detektion",
|
9 |
layout="wide",
|
10 |
initial_sidebar_state="collapsed"
|
11 |
)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
st.markdown("""
|
14 |
<style>
|
15 |
.stApp {
|
|
|
96 |
[data-testid="stExpander"], .element-container:has(>.stAlert) {
|
97 |
display: none !important;
|
98 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
</style>
|
100 |
""", unsafe_allow_html=True)
|
101 |
|
|
|
126 |
x1, y1 = box['xmin'], box['ymin']
|
127 |
x2, y2 = box['xmax'], box['ymax']
|
128 |
|
129 |
+
# Couleur basée sur le score
|
130 |
if score > 0.8:
|
131 |
+
fill_color = (255, 0, 0, 100) # Rouge
|
132 |
border_color = (255, 0, 0, 255)
|
133 |
elif score > 0.6:
|
134 |
+
fill_color = (255, 165, 0, 100) # Orange
|
135 |
border_color = (255, 165, 0, 255)
|
136 |
else:
|
137 |
+
fill_color = (255, 255, 0, 100) # Jaune
|
138 |
border_color = (255, 255, 0, 255)
|
139 |
|
140 |
+
# Rectangle semi-transparent
|
141 |
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
142 |
+
|
143 |
+
# Bordure
|
144 |
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
145 |
|
146 |
return overlay
|
|
|
152 |
box = pred['box']
|
153 |
score = pred['score']
|
154 |
|
155 |
+
# Création de l'overlay
|
156 |
overlay = create_heatmap_overlay(image, box, score)
|
157 |
result_image = Image.alpha_composite(result_image, overlay)
|
158 |
|
159 |
+
# Ajout du texte
|
160 |
draw = ImageDraw.Draw(result_image)
|
161 |
temp = 36.5 + (score * 2.5)
|
162 |
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
163 |
|
164 |
+
# Fond noir pour le texte
|
165 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
166 |
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
167 |
|
168 |
+
# Texte en blanc
|
169 |
draw.text(
|
170 |
(box['xmin'], box['ymin']-20),
|
171 |
label,
|
|
|
175 |
return result_image
|
176 |
|
177 |
def main():
|
178 |
+
models = load_models()
|
179 |
+
|
180 |
+
with st.container():
|
181 |
+
st.write("### 📤 Röntgenbild hochladen")
|
182 |
+
uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
|
183 |
|
184 |
+
col1, col2 = st.columns([2, 1])
|
185 |
+
with col1:
|
186 |
+
conf_threshold = st.slider(
|
187 |
+
"Konfidenzschwelle",
|
188 |
+
min_value=0.0, max_value=1.0,
|
189 |
+
value=0.60, step=0.05,
|
190 |
+
label_visibility="visible"
|
191 |
+
)
|
192 |
+
with col2:
|
193 |
+
analyze_button = st.button("Analysieren")
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
if uploaded_file and analyze_button:
|
196 |
+
with st.spinner("Bild wird analysiert..."):
|
197 |
+
image = Image.open(uploaded_file)
|
198 |
+
results_container = st.container()
|
199 |
+
|
200 |
+
predictions_watcher = models["KnochenWächter"](image)
|
201 |
+
predictions_master = models["RöntgenMeister"](image)
|
202 |
+
predictions_locator = models["KnochenAuge"](image)
|
203 |
+
|
204 |
+
has_fracture = False
|
205 |
+
max_fracture_score = 0
|
206 |
+
filtered_locations = [p for p in predictions_locator
|
207 |
+
if p['score'] >= conf_threshold]
|
208 |
+
|
209 |
+
for pred in predictions_watcher:
|
210 |
+
if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
|
211 |
+
has_fracture = True
|
212 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
213 |
+
|
214 |
+
with results_container:
|
215 |
+
st.write("### 🔍 Analyse Ergebnisse")
|
216 |
+
col1, col2 = st.columns(2)
|
217 |
|
218 |
+
with col1:
|
219 |
+
st.write("#### 🤖 KI-Diagnose")
|
|
|
220 |
|
221 |
+
st.markdown("#### 🛡️ KnochenWächter")
|
222 |
+
# Afficher tous les résultats de KnochenWächter
|
223 |
+
for pred in predictions_watcher:
|
224 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
225 |
+
label_lower = pred['label'].lower()
|
226 |
+
# Mettre à jour max_fracture_score seulement pour les fractures
|
227 |
+
if pred['score'] >= conf_threshold and 'fracture' in label_lower:
|
228 |
+
has_fracture = True
|
229 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
230 |
+
# Afficher tous les résultats
|
231 |
+
st.markdown(f"""
|
232 |
+
<div class="result-box" style="color: #1a1a1a;">
|
233 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
234 |
+
{pred['score']:.1%}
|
235 |
+
</span> - {translate_label(pred['label'])}
|
236 |
+
</div>
|
237 |
+
""", unsafe_allow_html=True)
|
238 |
+
|
239 |
+
st.markdown("#### 🎓 RöntgenMeister")
|
240 |
+
# Afficher tous les résultats de RöntgenMeister
|
241 |
+
for pred in predictions_master:
|
242 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
243 |
+
st.markdown(f"""
|
244 |
+
<div class="result-box" style="color: #1a1a1a;">
|
245 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
246 |
+
{pred['score']:.1%}
|
247 |
+
</span> - {translate_label(pred['label'])}
|
248 |
+
</div>
|
249 |
+
""", unsafe_allow_html=True)
|
250 |
+
|
251 |
+
if max_fracture_score > 0:
|
252 |
+
st.write("#### 📊 Wahrscheinlichkeit")
|
253 |
+
no_fracture_prob = 1 - max_fracture_score
|
254 |
+
st.markdown(f"""
|
255 |
+
<div class="result-box" style="color: #1a1a1a;">
|
256 |
+
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
257 |
+
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
258 |
+
</div>
|
259 |
+
""", unsafe_allow_html=True)
|
260 |
+
|
261 |
+
with col2:
|
262 |
+
predictions = models["KnochenAuge"](image)
|
263 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
264 |
|
265 |
+
if filtered_preds:
|
266 |
+
st.write("#### 🎯 Fraktur Lokalisation")
|
267 |
+
result_image = draw_boxes(image, filtered_preds)
|
268 |
+
st.image(result_image, use_container_width=True)
|
269 |
+
else:
|
270 |
+
st.write("#### 🖼️ Röntgenbild")
|
271 |
+
st.image(image, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
if __name__ == "__main__":
|
274 |
main()
|