Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image, ImageDraw
|
5 |
import torch
|
6 |
|
7 |
-
# Configuration
|
8 |
st.set_page_config(
|
9 |
page_title="Fraktur Detektion",
|
10 |
layout="wide",
|
@@ -14,98 +13,98 @@ st.set_page_config(
|
|
14 |
# CSS optimisé
|
15 |
st.markdown("""
|
16 |
<style>
|
17 |
-
/*
|
18 |
.stApp {
|
19 |
-
background:
|
20 |
padding: 0 !important;
|
|
|
|
|
21 |
}
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
.block-container {
|
24 |
padding: 0.5rem !important;
|
25 |
max-width: 100% !important;
|
26 |
}
|
27 |
|
28 |
-
/*
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
}
|
36 |
|
37 |
-
/*
|
38 |
-
.
|
39 |
-
|
40 |
-
|
41 |
-
padding: 0.5rem;
|
42 |
}
|
43 |
|
44 |
-
.
|
45 |
-
|
|
|
|
|
46 |
}
|
47 |
|
48 |
-
/*
|
49 |
.result-box {
|
50 |
-
padding: 0.
|
51 |
border-radius: 0.375rem;
|
52 |
margin: 0.25rem 0;
|
|
|
53 |
border: 1px solid var(--border-color);
|
54 |
-
|
55 |
-
}
|
56 |
-
|
57 |
-
/* Tabs plus compacts */
|
58 |
-
.stTabs [data-baseweb="tab-list"] {
|
59 |
-
gap: 0.5rem;
|
60 |
}
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
}
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
--background-color: rgba(249, 250, 251, 0.8);
|
70 |
-
--border-color: #e5e7eb;
|
71 |
-
--text-color: #1f2937;
|
72 |
}
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
--text-color: #e5e7eb;
|
78 |
}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
.block-container {
|
83 |
-
padding: 0.25rem !important;
|
84 |
-
}
|
85 |
}
|
86 |
</style>
|
87 |
-
<script>
|
88 |
-
function updateTheme(isDark) {
|
89 |
-
document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
|
90 |
-
}
|
91 |
-
|
92 |
-
window.addEventListener('message', function(e) {
|
93 |
-
if (e.data.type === 'theme-change') {
|
94 |
-
updateTheme(e.data.theme === 'dark');
|
95 |
-
}
|
96 |
-
});
|
97 |
-
|
98 |
-
// Thème initial basé sur les préférences système
|
99 |
-
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
|
100 |
-
</script>
|
101 |
""", unsafe_allow_html=True)
|
102 |
|
103 |
@st.cache_resource
|
104 |
def load_models():
|
105 |
return {
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
110 |
}
|
111 |
|
@@ -114,7 +113,7 @@ def translate_label(label):
|
|
114 |
"fracture": "Knochenbruch",
|
115 |
"no fracture": "Kein Bruch",
|
116 |
"normal": "Normal",
|
117 |
-
"abnormal": "
|
118 |
}
|
119 |
return translations.get(label.lower(), label)
|
120 |
|
@@ -134,76 +133,85 @@ def draw_boxes(image, predictions):
|
|
134 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
135 |
draw.rectangle(text_bbox, fill=color)
|
136 |
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
|
137 |
-
|
138 |
return image
|
139 |
|
140 |
def main():
|
141 |
models = load_models()
|
142 |
|
143 |
-
# Contrôle de confiance
|
144 |
conf_threshold = st.slider(
|
145 |
"Konfidenzschwelle",
|
146 |
-
min_value=0.0,
|
147 |
-
|
148 |
-
value=0.60,
|
149 |
-
step=0.05,
|
150 |
-
help="Schwellenwert für die Erkennung (0-1)"
|
151 |
)
|
152 |
|
153 |
# Upload plus propre
|
154 |
-
uploaded_file = st.file_uploader(
|
155 |
-
"",
|
156 |
-
type=['png', 'jpg', 'jpeg'],
|
157 |
-
key="xray_upload"
|
158 |
-
)
|
159 |
|
160 |
if uploaded_file:
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
image = Image.open(uploaded_file)
|
165 |
-
max_size = (300, 300)
|
166 |
-
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
167 |
-
st.image(image, use_container_width=True)
|
168 |
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
with tab2:
|
188 |
-
with st.spinner("Lokalisierung..."):
|
189 |
-
predictions = models["D3STRON"](image)
|
190 |
-
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
191 |
-
|
192 |
-
if filtered_preds:
|
193 |
-
result_image = image.copy()
|
194 |
-
result_image = draw_boxes(result_image, filtered_preds)
|
195 |
-
st.image(result_image, use_container_width=True)
|
196 |
-
|
197 |
-
for pred in filtered_preds:
|
198 |
-
st.markdown(f"""
|
199 |
-
<div class='result-box'>
|
200 |
-
{translate_label(pred['label'])}: {pred['score']:.1%}
|
201 |
-
</div>
|
202 |
-
""", unsafe_allow_html=True)
|
203 |
-
else:
|
204 |
-
st.info("Keine Erkennungen über dem Schwellenwert")
|
205 |
else:
|
206 |
-
st.info("Röntgenbild hochladen (JPEG, PNG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image, ImageDraw
|
4 |
import torch
|
5 |
|
6 |
+
# Configuration page
|
7 |
st.set_page_config(
|
8 |
page_title="Fraktur Detektion",
|
9 |
layout="wide",
|
|
|
13 |
# CSS optimisé
|
14 |
st.markdown("""
|
15 |
<style>
|
16 |
+
/* Reset complet */
|
17 |
.stApp {
|
18 |
+
background-color: var(--background-color) !important;
|
19 |
padding: 0 !important;
|
20 |
+
max-height: 600px !important;
|
21 |
+
overflow: hidden !important;
|
22 |
}
|
23 |
|
24 |
+
/* Variables de thème */
|
25 |
+
[data-theme="light"] {
|
26 |
+
--background-color: #ffffff;
|
27 |
+
--text-color: #1f2937;
|
28 |
+
--border-color: #e5e7eb;
|
29 |
+
--secondary-bg: #f3f4f6;
|
30 |
+
}
|
31 |
+
|
32 |
+
[data-theme="dark"] {
|
33 |
+
--background-color: #1f2937;
|
34 |
+
--text-color: #f3f4f6;
|
35 |
+
--border-color: #4b5563;
|
36 |
+
--secondary-bg: #374151;
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Conteneur principal */
|
40 |
.block-container {
|
41 |
padding: 0.5rem !important;
|
42 |
max-width: 100% !important;
|
43 |
}
|
44 |
|
45 |
+
/* Upload et contrôles */
|
46 |
+
.uploadedFile {
|
47 |
+
border: 1px dashed var(--border-color);
|
48 |
+
border-radius: 0.375rem;
|
49 |
+
padding: 0.25rem;
|
50 |
+
background: var(--secondary-bg);
|
51 |
}
|
52 |
|
53 |
+
/* Images plus petites */
|
54 |
+
.stImage > img {
|
55 |
+
max-width: 250px !important;
|
56 |
+
max-height: 250px !important;
|
57 |
+
margin: 0 auto !important;
|
58 |
}
|
59 |
|
60 |
+
/* Tabs compacts */
|
61 |
+
.stTabs [data-baseweb="tab-list"] {
|
62 |
+
gap: 0.25rem;
|
63 |
+
background: transparent;
|
|
|
64 |
}
|
65 |
|
66 |
+
.stTabs [data-baseweb="tab"] {
|
67 |
+
padding: 0.25rem 0.5rem;
|
68 |
+
background: var(--secondary-bg);
|
69 |
+
border-radius: 0.375rem;
|
70 |
}
|
71 |
|
72 |
+
/* Résultats */
|
73 |
.result-box {
|
74 |
+
padding: 0.375rem;
|
75 |
border-radius: 0.375rem;
|
76 |
margin: 0.25rem 0;
|
77 |
+
background: var(--secondary-bg);
|
78 |
border: 1px solid var(--border-color);
|
79 |
+
color: var(--text-color);
|
|
|
|
|
|
|
|
|
|
|
80 |
}
|
81 |
|
82 |
+
/* Cacher éléments inutiles */
|
83 |
+
#MainMenu, footer, header, .viewerBadge_container__1QSob, .stDeployButton {
|
84 |
+
display: none !important;
|
85 |
}
|
86 |
|
87 |
+
div[data-testid="stVerticalBlock"] {
|
88 |
+
gap: 0.5rem !important;
|
|
|
|
|
|
|
89 |
}
|
90 |
|
91 |
+
/* Ajustements espacement */
|
92 |
+
.st-emotion-cache-1kyxreq {
|
93 |
+
margin-top: -1rem !important;
|
|
|
94 |
}
|
95 |
|
96 |
+
.st-emotion-cache-1wmy9hl {
|
97 |
+
padding: 0 !important;
|
|
|
|
|
|
|
98 |
}
|
99 |
</style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
""", unsafe_allow_html=True)
|
101 |
|
102 |
@st.cache_resource
|
103 |
def load_models():
|
104 |
return {
|
105 |
+
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"), # L'œil des os
|
106 |
+
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"), # Le gardien des os
|
107 |
+
"RöntgenMeister": pipeline("image-classification", # Le maître des rayons X
|
108 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
109 |
}
|
110 |
|
|
|
113 |
"fracture": "Knochenbruch",
|
114 |
"no fracture": "Kein Bruch",
|
115 |
"normal": "Normal",
|
116 |
+
"abnormal": "Auffällig"
|
117 |
}
|
118 |
return translations.get(label.lower(), label)
|
119 |
|
|
|
133 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
134 |
draw.rectangle(text_bbox, fill=color)
|
135 |
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
|
|
|
136 |
return image
|
137 |
|
138 |
def main():
|
139 |
models = load_models()
|
140 |
|
141 |
+
# Contrôle de confiance compact
|
142 |
conf_threshold = st.slider(
|
143 |
"Konfidenzschwelle",
|
144 |
+
min_value=0.0, max_value=1.0,
|
145 |
+
value=0.60, step=0.05
|
|
|
|
|
|
|
146 |
)
|
147 |
|
148 |
# Upload plus propre
|
149 |
+
uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])
|
|
|
|
|
|
|
|
|
150 |
|
151 |
if uploaded_file:
|
152 |
+
image = Image.open(uploaded_file)
|
153 |
+
max_size = (250, 250) # Taille réduite
|
154 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
tab1, tab2 = st.tabs(["📊 KI-Analyse", "🔍 Lokalisierung"])
|
157 |
+
|
158 |
+
with tab1:
|
159 |
+
# Afficher l'image originale seulement dans l'onglet Analyse
|
160 |
+
st.image(image, use_container_width=False)
|
161 |
|
162 |
+
model_names = {
|
163 |
+
"KnochenWächter": "🛡️ Der KnochenWächter",
|
164 |
+
"RöntgenMeister": "🎓 Der RöntgenMeister"
|
165 |
+
}
|
166 |
+
|
167 |
+
for model_key, display_name in model_names.items():
|
168 |
+
st.markdown(f"<div style='font-weight:500; margin-top:0.5rem;'>{display_name}</div>", unsafe_allow_html=True)
|
169 |
+
predictions = models[model_key](image)
|
170 |
+
for pred in predictions:
|
171 |
+
if pred['score'] >= conf_threshold:
|
172 |
+
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
173 |
+
st.markdown(f"""
|
174 |
+
<div class='result-box'>
|
175 |
+
<span style='color: {score_color}; font-weight: 500;'>
|
176 |
+
{pred['score']:.1%}
|
177 |
+
</span> - {translate_label(pred['label'])}
|
178 |
+
</div>
|
179 |
+
""", unsafe_allow_html=True)
|
180 |
+
|
181 |
+
with tab2:
|
182 |
+
# Dans l'onglet Lokalisierung, montrer directement l'image avec les boîtes
|
183 |
+
with st.spinner("Analyse läuft..."):
|
184 |
+
predictions = models["KnochenAuge"](image)
|
185 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
186 |
+
|
187 |
+
if filtered_preds:
|
188 |
+
result_image = image.copy()
|
189 |
+
result_image = draw_boxes(result_image, filtered_preds)
|
190 |
+
st.markdown("### 👁️ Das KnochenAuge")
|
191 |
+
st.image(result_image, use_container_width=False)
|
192 |
+
else:
|
193 |
+
st.info("Keine Auffälligkeiten erkannt")
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
else:
|
196 |
+
st.info("Röntgenbild hochladen (JPEG, PNG)")
|
197 |
+
|
198 |
+
# Script pour la synchronisation du thème
|
199 |
+
st.markdown("""
|
200 |
+
<script>
|
201 |
+
function updateTheme(isDark) {
|
202 |
+
document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
|
203 |
+
}
|
204 |
+
|
205 |
+
window.addEventListener('message', function(e) {
|
206 |
+
if (e.data.type === 'theme-change') {
|
207 |
+
updateTheme(e.data.theme === 'dark');
|
208 |
+
}
|
209 |
+
});
|
210 |
+
|
211 |
+
// Thème initial
|
212 |
+
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
|
213 |
+
</script>
|
214 |
+
""", unsafe_allow_html=True)
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
main()
|