radpid / app.py
yassonee's picture
Update app.py
f5a9b22 verified
raw
history blame
2.09 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2
st.set_page_config(page_title="Détection de fractures osseuses")
st.title("Détection de fractures osseuses par rayons X")
@st.cache_resource
def load_model():
return pipeline("object-detection", model="anirban22/detr-resnet-50-med_fracture")
model = load_model()
uploaded_file = st.file_uploader("Téléchargez une image radiographique", type=["jpg", "jpeg", "png"])
if uploaded_file:
image = Image.open(uploaded_file)
if image.size[0] > 800:
ratio = 800.0 / image.size[0]
size = (800, int(image.size[1] * ratio))
image = image.resize(size, Image.Resampling.LANCZOS)
image_array = np.array(image)
# Get predictions
predictions = model(image)
# Create columns for display
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Image originale", use_container_width=True)
with col2:
# Draw bounding boxes
img_with_boxes = image_array.copy()
for pred in predictions:
box = pred['box']
score = pred['score']
label = pred['label']
# Draw rectangle
x1, y1, x2, y2 = [int(i) for i in [box['xmin'], box['ymin'], box['xmax'], box['ymax']]]
cv2.rectangle(img_with_boxes, (x1, y1), (x2, y2), (255, 0, 0), 2)
# Add label and score
text = f"{label}: {score:.2f}"
cv2.putText(img_with_boxes, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
st.image(img_with_boxes, caption="Fractures détectées", use_container_width=True)
# Display results
st.subheader("Résultats")
if predictions:
for pred in predictions:
st.warning(f"⚠️ {pred['label']} détectée (Confiance: {pred['score']*100:.1f}%)")
else:
st.success("✅ Aucune fracture détectée")
else:
st.info("Veuillez télécharger une image radiographique pour l'analyse.")