|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
|
|
st.set_page_config(page_title="Détection de fractures osseuses") |
|
|
|
st.title("Détection de fractures osseuses par rayons X") |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
return pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray") |
|
|
|
model = load_model() |
|
|
|
uploaded_file = st.file_uploader("Téléchargez une image radiographique", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file: |
|
|
|
image = Image.open(uploaded_file) |
|
|
|
if image.size[0] > 800: |
|
ratio = 800.0 / image.size[0] |
|
size = (800, int(image.size[1] * ratio)) |
|
image = image.resize(size, Image.Resampling.LANCZOS) |
|
|
|
|
|
image_array = np.array(image) |
|
|
|
|
|
result = model(image)[0] |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.image(image, caption="Image originale", use_container_width=True) |
|
|
|
with col2: |
|
|
|
overlay = np.zeros_like(image_array) |
|
if result['label'] == "FRACTURE": |
|
overlay[..., 0] = 255 |
|
alpha = 0.3 |
|
else: |
|
overlay[..., 1] = 255 |
|
alpha = 0.2 |
|
|
|
|
|
output = cv2.addWeighted(image_array, 1, overlay, alpha, 0) |
|
st.image(output, caption="Image analysée", use_container_width=True) |
|
|
|
|
|
st.subheader("Résultat") |
|
if result['label'] == "FRACTURE": |
|
st.error(f"⚠️ Fracture détectée (Confiance: {result['score']*100:.1f}%)") |
|
else: |
|
st.success(f"✅ Pas de fracture détectée (Confiance: {result['score']*100:.1f}%)") |
|
|
|
else: |
|
st.info("Veuillez télécharger une image radiographique pour l'analyse.") |