File size: 4,454 Bytes
f700114
 
 
 
6cc7ff9
f700114
 
 
 
 
005d8cf
f700114
3982789
f700114
aae61a3
f700114
9aecd9e
f700114
 
 
 
 
3982789
f700114
 
 
 
 
d119a53
f700114
 
 
 
3982789
c16e85e
f700114
aae61a3
 
 
f700114
 
 
 
 
 
aae61a3
f700114
 
 
 
aae61a3
 
f700114
aae61a3
f700114
9516554
aae61a3
f700114
 
 
aae61a3
 
 
 
f700114
 
aae61a3
 
f700114
 
 
 
 
 
 
 
 
aae61a3
f700114
 
 
 
 
aae61a3
 
 
 
 
 
 
 
 
 
 
 
 
 
f700114
 
 
 
aae61a3
 
 
 
 
 
f700114
aae61a3
f700114
 
 
 
aae61a3
f700114
aae61a3
 
 
 
 
 
 
 
 
 
 
 
f700114
 
aae61a3
 
f700114
 
6ea5ee2
f700114
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import torch

st.set_page_config(
    page_title="Fraktur Detektion",
    layout="wide",
    initial_sidebar_state="collapsed"
)

st.markdown("""
<style>
    .stApp {
        background-color: transparent !important;
        padding: 0 !important;
    }
    
    [data-theme="light"] {
        --background-color: #ffffff;
        --text-color: #1f2937;
        --border-color: #e5e7eb;
    }
    
    [data-theme="dark"] {
        --background-color: #1f2937;
        --text-color: #f3f4f6;
        --border-color: #4b5563;
    }
    
    .block-container {
        padding: 0.5rem !important;
        max-width: 100% !important;
    }
    
    .stImage > img {
        max-height: 250px !important;
        width: auto !important;
        margin: 0 auto !important;
    }
    
    .result-box {
        padding: 0.375rem;
        border-radius: 0.375rem;
        margin: 0.25rem 0;
        background: var(--background-color);
        border: 1px solid var(--border-color);
        color: var(--text-color);
    }
    
    h2, h3, h4 {
        margin: 0.5rem 0 !important;
        color: var(--text-color) !important;
        font-size: 1rem !important;
    }
    
    #MainMenu, footer, header {
        display: none !important;
    }
    
    .uploadedFile {
        border: 1px dashed var(--border-color);
        border-radius: 0.375rem;
        padding: 0.25rem;
    }
    
    .row-widget.stButton {
        text-align: center;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def draw_boxes(image, predictions):
    draw = ImageDraw.Draw(image)
    for pred in predictions:
        if pred['label'].lower() == 'fracture' and pred['score'] > 0.6:
            box = pred['box']
            label = f"Fraktur ({pred['score']:.2%})"
            color = "#2563eb"
            
            draw.rectangle(
                [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
                outline=color,
                width=2
            )
            
            text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
            draw.rectangle(text_bbox, fill=color)
            draw.text((box['xmin'], box['ymin']-15), label, fill="white")
    return image

def main():
    models = load_models()
    
    st.markdown("### 📤 Röntgenbilder Upload")
    uploaded_files = st.file_uploader("", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
    
    if uploaded_files:
        col1, col2 = st.columns([1, 1])
        
        for idx, uploaded_file in enumerate(uploaded_files):
            image = Image.open(uploaded_file)
            
            # Analyse avec KnochenAuge (localisierung)
            predictions = models["KnochenAuge"](image)
            fractures_found = any(p['label'].lower() == 'fracture' and p['score'] > 0.6 for p in predictions)
            
            # Afficher uniquement si des fractures sont détectées
            if fractures_found:
                with col1 if idx % 2 == 0 else col2:
                    result_image = image.copy()
                    result_image = draw_boxes(result_image, predictions)
                    st.image(result_image, caption=f"Bild {idx + 1}", use_column_width=True)
                    
                    # Analyse KnochenWächter et RöntgenMeister
                    pred_wachter = models["KnochenWächter"](image)[0]
                    pred_meister = models["RöntgenMeister"](image)[0]
                    
                    if pred_wachter['score'] > 0.6 or pred_meister['score'] > 0.6:
                        st.markdown(f"""
                            <div class='result-box'>
                                <span style='color: #2563eb'>KnochenWächter:</span> {pred_wachter['score']:.1%}<br>
                                <span style='color: #2563eb'>RöntgenMeister:</span> {pred_meister['score']:.1%}
                            </div>
                        """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()