File size: 4,819 Bytes
f700114 cc165f9 f700114 6cc7ff9 f700114 cc165f9 383659b f700114 005d8cf f700114 3982789 f700114 1f4aa65 2497a00 9aecd9e 1f4aa65 f700114 2497a00 f700114 3982789 1f4aa65 f700114 2497a00 383659b 2497a00 383659b f700114 1f4aa65 383659b 2497a00 383659b 1f4aa65 2497a00 c6944a1 f700114 cc165f9 ebfde4d cc165f9 f700114 383659b f700114 383659b 1f4aa65 383659b 1f4aa65 383659b f700114 cc165f9 383659b 1f4aa65 383659b 1f4aa65 383659b 1f4aa65 383659b 1f4aa65 383659b 1f4aa65 2497a00 383659b f700114 1f4aa65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
st.set_page_config(
page_title="Fraktur Detektion",
layout="wide",
initial_sidebar_state="collapsed"
)
st.markdown("""
<style>
.stApp {
padding: 0 !important;
height: 100vh !important;
overflow: hidden !important;
}
.block-container {
padding: 0.25rem !important;
max-width: 100% !important;
}
.stImage > img {
width: 80% !important;
height: auto !important;
max-height: 200px !important;
object-fit: contain !important;
}
h2, h3 {
font-size: 0.9rem !important;
}
.result-box {
font-size: 0.8rem !important;
margin: 0.2rem 0 !important;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
return {
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"RöntgenMeister": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Bruch",
"normal": "Normal",
"abnormal": "Auffällig"
}
return translations.get(label.lower(), label)
def draw_boxes(image, predictions):
draw = ImageDraw.Draw(image)
for pred in predictions:
box = pred['box']
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
draw.rectangle(
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
outline=color,
width=2
)
# Label plus compact
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
draw.rectangle(text_bbox, fill=color)
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
return image
def main():
models = load_models()
# Disposition en deux colonnes principales
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("### 📤 Röntgenbild Upload")
uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])
if uploaded_file:
conf_threshold = st.slider(
"Konfidenzschwelle",
min_value=0.0, max_value=1.0,
value=0.60, step=0.05
)
with col2:
if uploaded_file:
image = Image.open(uploaded_file)
st.markdown("### 🔍 Meinung der KI-Experten")
# Analyse avec KnochenAuge (localisation)
st.markdown("#### 👁️ Das KnochenAuge - Lokalisation")
predictions = models["KnochenAuge"](image)
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
if filtered_preds:
result_image = image.copy()
result_image = draw_boxes(result_image, filtered_preds)
st.image(result_image, use_container_width=True)
# Toujours afficher les résultats des autres modèles
st.markdown("#### 🎯 KI-Analyse")
col_left, col_right = st.columns(2)
with col_left:
st.markdown("**🛡️ Der KnochenWächter**")
predictions = models["KnochenWächter"](image)
for pred in predictions:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
with col_right:
st.markdown("**🎓 Der RöntgenMeister**")
predictions = models["RöntgenMeister"](image)
for pred in predictions:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
else:
st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")
if __name__ == "__main__":
main()
|