File size: 4,819 Bytes
f700114
cc165f9
f700114
6cc7ff9
f700114
cc165f9
383659b
f700114
 
005d8cf
f700114
3982789
f700114
 
1f4aa65
2497a00
9aecd9e
1f4aa65
f700114
2497a00
f700114
3982789
1f4aa65
f700114
2497a00
383659b
2497a00
383659b
f700114
1f4aa65
383659b
2497a00
383659b
1f4aa65
2497a00
 
 
c6944a1
f700114
 
 
 
 
 
 
cc165f9
ebfde4d
cc165f9
f700114
 
383659b
 
 
 
 
 
 
 
 
f700114
 
 
383659b
 
 
1f4aa65
383659b
 
 
 
 
1f4aa65
383659b
 
 
 
f700114
 
 
cc165f9
383659b
 
 
 
 
 
 
1f4aa65
383659b
 
 
 
 
 
 
 
 
 
1f4aa65
383659b
1f4aa65
 
383659b
 
 
1f4aa65
383659b
 
 
 
1f4aa65
2497a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383659b
 
 
f700114
1f4aa65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw

st.set_page_config(
    page_title="Fraktur Detektion",
    layout="wide",
    initial_sidebar_state="collapsed"
)

st.markdown("""
<style>
    .stApp {
        padding: 0 !important;
        height: 100vh !important;
        overflow: hidden !important;
    }

    .block-container {
        padding: 0.25rem !important;
        max-width: 100% !important;
    }

    .stImage > img {
        width: 80% !important;
        height: auto !important;
        max-height: 200px !important;
        object-fit: contain !important;
    }

    h2, h3 {
        font-size: 0.9rem !important;
    }

    .result-box {
        font-size: 0.8rem !important;
        margin: 0.2rem 0 !important;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", 
            model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def translate_label(label):
    translations = {
        "fracture": "Knochenbruch",
        "no fracture": "Kein Bruch",
        "normal": "Normal",
        "abnormal": "Auffällig"
    }
    return translations.get(label.lower(), label)

def draw_boxes(image, predictions):
    draw = ImageDraw.Draw(image)
    for pred in predictions:
        box = pred['box']
        label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
        color = "#2563eb" if pred['score'] > 0.7 else "#eab308"

        draw.rectangle(
            [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
            outline=color,
            width=2
        )

        # Label plus compact
        text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
        draw.rectangle(text_bbox, fill=color)
        draw.text((box['xmin'], box['ymin']-15), label, fill="white")
    return image

def main():
    models = load_models()

    # Disposition en deux colonnes principales
    col1, col2 = st.columns([1, 2])

    with col1:
        st.markdown("### 📤 Röntgenbild Upload")
        uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])

        if uploaded_file:
            conf_threshold = st.slider(
                "Konfidenzschwelle",
                min_value=0.0, max_value=1.0,
                value=0.60, step=0.05
            )

    with col2:
        if uploaded_file:
            image = Image.open(uploaded_file)

            st.markdown("### 🔍 Meinung der KI-Experten")

            # Analyse avec KnochenAuge (localisation)
            st.markdown("#### 👁️ Das KnochenAuge - Lokalisation")
            predictions = models["KnochenAuge"](image)
            filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]

            if filtered_preds:
                result_image = image.copy()
                result_image = draw_boxes(result_image, filtered_preds)
                st.image(result_image, use_container_width=True)

            # Toujours afficher les résultats des autres modèles
            st.markdown("#### 🎯 KI-Analyse")
            col_left, col_right = st.columns(2)

            with col_left:
                st.markdown("**🛡️ Der KnochenWächter**")
                predictions = models["KnochenWächter"](image)
                for pred in predictions:
                    score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
                    st.markdown(f"""
                        <div class='result-box'>
                            <span style='color: {score_color}; font-weight: 500;'>
                                {pred['score']:.1%}
                            </span> - {translate_label(pred['label'])}
                        </div>
                    """, unsafe_allow_html=True)

            with col_right:
                st.markdown("**🎓 Der RöntgenMeister**")
                predictions = models["RöntgenMeister"](image)
                for pred in predictions:
                    score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
                    st.markdown(f"""
                        <div class='result-box'>
                            <span style='color: {score_color}; font-weight: 500;'>
                                {pred['score']:.1%}
                            </span> - {translate_label(pred['label'])}
                        </div>
                    """, unsafe_allow_html=True)
        else:
            st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")

if __name__ == "__main__":
    main()