File size: 7,257 Bytes
f700114
cc165f9
f700114
 
6cc7ff9
f700114
cc165f9
383659b
f700114
 
005d8cf
f700114
3982789
383659b
f700114
383659b
f700114
383659b
1f4aa65
9aecd9e
1f4aa65
383659b
 
 
 
 
 
ebfde4d
1f4aa65
383659b
 
 
 
 
d119a53
1f4aa65
383659b
f700114
383659b
f700114
3982789
1f4aa65
383659b
 
 
 
 
 
 
1f4aa65
383659b
 
 
 
1f4aa65
383659b
f700114
383659b
 
 
 
f700114
1f4aa65
383659b
 
 
aae61a3
383659b
 
 
 
 
1f4aa65
383659b
 
 
 
 
 
 
1f4aa65
383659b
 
 
 
1f4aa65
383659b
 
 
 
1f4aa65
383659b
 
c6944a1
f700114
 
 
 
 
 
 
cc165f9
ebfde4d
cc165f9
f700114
 
383659b
 
 
 
 
 
 
 
 
f700114
 
 
383659b
 
 
1f4aa65
383659b
 
 
 
 
1f4aa65
383659b
 
 
 
f700114
 
 
cc165f9
383659b
 
 
 
 
 
 
1f4aa65
383659b
 
 
 
 
 
 
 
 
 
1f4aa65
383659b
1f4aa65
 
383659b
 
 
1f4aa65
383659b
 
 
 
1f4aa65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383659b
 
 
 
 
 
 
 
 
1f4aa65
383659b
 
 
 
 
1f4aa65
383659b
 
 
6ea5ee2
f700114
1f4aa65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import torch

st.set_page_config(
    page_title="Fraktur Detektion",
    layout="wide",
    initial_sidebar_state="collapsed"
)

st.markdown("""
<style>
    /* Reset et base */
    .stApp {
        background-color: var(--background-color) !important;
        padding: 0 !important;
        overflow: hidden !important;
        height: 100vh !important;
    }

    /* Variables de thème */
    [data-theme="light"] {
        --background-color: #ffffff;
        --text-color: #1f2937;
        --border-color: #e5e7eb;
        --secondary-bg: #f3f4f6;
    }

    [data-theme="dark"] {
        --background-color: #1f2937;
        --text-color: #f3f4f6;
        --border-color: #4b5563;
        --secondary-bg: #374151;
    }

    /* Layout principal */
    .block-container {
        padding: 0.5rem !important;
        max-width: 100% !important;
    }

    /* Contrôles et upload */
    .uploadedFile {
        border: 1px dashed var(--border-color);
        border-radius: 0.375rem;
        padding: 0.25rem;
        background: var(--secondary-bg);
    }

    /* Ajustement des colonnes */
    [data-testid="column"] {
        padding: 0 0.5rem !important;
    }

    /* Images adaptatives */
    .stImage > img {
        width: 100% !important;
        height: auto !important;
        max-height: 400px !important;
        object-fit: contain !important;
    }

    /* Résultats */
    .result-box {
        padding: 0.375rem;
        border-radius: 0.375rem;
        margin: 0.25rem 0;
        background: var(--secondary-bg);
        border: 1px solid var(--border-color);
        color: var(--text-color);
    }

    /* Titres */
    h2, h3 {
        margin: 0 !important;
        padding: 0.5rem 0 !important;
        font-size: 1rem !important;
        color: var(--text-color) !important;
    }

    /* Nettoyage des éléments inutiles */
    #MainMenu, footer, header, .viewerBadge_container__1QSob, .stDeployButton {
        display: none !important;
    }

    /* Ajustements espacement */
    div[data-testid="stVerticalBlock"] {
        gap: 0.5rem !important;
    }

    .element-container {
        margin: 0.25rem 0 !important;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_models():
    return {
        "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
        "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
        "RöntgenMeister": pipeline("image-classification", 
            model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
    }

def translate_label(label):
    translations = {
        "fracture": "Knochenbruch",
        "no fracture": "Kein Bruch",
        "normal": "Normal",
        "abnormal": "Auffällig"
    }
    return translations.get(label.lower(), label)

def draw_boxes(image, predictions):
    draw = ImageDraw.Draw(image)
    for pred in predictions:
        box = pred['box']
        label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
        color = "#2563eb" if pred['score'] > 0.7 else "#eab308"

        draw.rectangle(
            [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
            outline=color,
            width=2
        )

        # Label plus compact
        text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
        draw.rectangle(text_bbox, fill=color)
        draw.text((box['xmin'], box['ymin']-15), label, fill="white")
    return image

def main():
    models = load_models()

    # Disposition en deux colonnes principales
    col1, col2 = st.columns([1, 2])

    with col1:
        st.markdown("### 📤 Röntgenbild Upload")
        uploaded_file = st.file_uploader("", type=['png', 'jpg', 'jpeg'])

        if uploaded_file:
            conf_threshold = st.slider(
                "Konfidenzschwelle",
                min_value=0.0, max_value=1.0,
                value=0.60, step=0.05
            )

    with col2:
        if uploaded_file:
            image = Image.open(uploaded_file)

            st.markdown("### 🔍 Meinung der KI-Experten")

            # Analyse avec KnochenAuge (localisation)
            st.markdown("#### 👁️ Das KnochenAuge - Lokalisation")
            predictions = models["KnochenAuge"](image)
            filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]

            if filtered_preds:
                result_image = image.copy()
                result_image = draw_boxes(result_image, filtered_preds)
                st.image(result_image, use_container_width=True)

                # Affichage des résultats supplémentaires uniquement si des fractures sont détectées
                st.markdown("#### 🎯 KI-Analyse")
                col_left, col_right = st.columns(2)

                with col_left:
                    st.markdown("**🛡️ Der KnochenWächter**")
                    predictions = models["KnochenWächter"](image)
                    for pred in predictions:
                        if pred['score'] >= conf_threshold:
                            score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
                            st.markdown(f"""
                                <div class='result-box'>
                                    <span style='color: {score_color}; font-weight: 500;'>
                                        {pred['score']:.1%}
                                    </span> - {translate_label(pred['label'])}
                                </div>
                            """, unsafe_allow_html=True)

                with col_right:
                    st.markdown("**🎓 Der RöntgenMeister**")
                    predictions = models["RöntgenMeister"](image)
                    for pred in predictions:
                        if pred['score'] >= conf_threshold:
                            score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
                            st.markdown(f"""
                                <div class='result-box'>
                                    <span style='color: {score_color}; font-weight: 500;'>
                                        {pred['score']:.1%}
                                    </span> - {translate_label(pred['label'])}
                                </div>
                            """, unsafe_allow_html=True)
            else:
                st.info("Kein Bruch erkannt.")
        else:
            st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")

    # Script pour la synchronisation du thème
    st.markdown("""
        <script>
            function updateTheme(isDark) {
                document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
            }

            window.addEventListener('message', function(e) {
                if (e.data.type === 'theme-change') {
                    updateTheme(e.data.theme === 'dark');
                }
            });

            updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
        </script>
    """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()