Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from wenet.cli.model import load_model | |
from huggingface_hub import hf_hub_download | |
import spaces | |
REPO_ID = "Revai/reverb-asr" | |
files = ['reverb_asr_v1.jit.zip', 'tk.units.txt'] | |
downloaded_files = [hf_hub_download(repo_id=REPO_ID, filename=f) for f in files] | |
model = load_model(downloaded_files[0], downloaded_files[1]) | |
def process_cat_embs(cat_embs): | |
device = "gpu" | |
cat_embs = torch.tensor([float(c) for c in cat_embs.split(',')]).to(device) | |
return cat_embs | |
def recognition(audio, style=0): | |
if not audio: | |
return "Input Error! Please enter one audio!" | |
cat_embs = process_cat_embs(f'{style},{1-style}') | |
result = model.transcribe(audio, cat_embs=cat_embs) | |
if not result or 'text' not in result: | |
return "ERROR! No text output! Please try again!" | |
text_output = result['text'].replace('β', ' ') | |
return text_output | |
# Gradio UI Components | |
inputs = [ | |
gr.Audio(source="microphone", type="filepath", label='Input audio'), | |
gr.Slider(0, 1, value=0, label="Transcription Style", info="Adjust between non-verbatim (0) and verbatim (1) transcription") | |
] | |
output = gr.Textbox(label="Output Text") | |
# UI and Interface | |
iface = gr.Interface( | |
fn=recognition, | |
inputs=inputs, | |
outputs=output, | |
title="Reverb ASR Transcription", | |
description="Supports verbatim and non-verbatim transcription styles.", | |
article="<p style='text-align: center'><a href='https://rev.com' target='_blank'>Learn more about Rev</a></p>", | |
theme='huggingface' | |
) | |
iface.launch(enable_queue=True) | |