# -*- coding: utf-8 -*- """ Final WebApp using Gradio """ # Required Libraries import cv2 import torch from pytesseract import pytesseract from transformers import AutoModel, AutoTokenizer import gradio as gr import tempfile import os # Check if GPU is available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load models for OCR tokenizer_eng = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model_eng = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True).to(device).eval() # Tesseract configuration for Hindi OCR pytesseract.tesseract_cmd = '/usr/bin/tesseract' tesseract_config = '--oem 3 --psm 6 -l hin' # OCR function for both English and Hindi def perform_ocr(img, language): # Use a temporary file for the uploaded image with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_img: img.save(temp_img.name) img_path = temp_img.name res_eng = "" res_hin = "" if language in ["English", "Both"]: # Ensure that inference is done on the correct device (GPU or CPU) with torch.no_grad(): res_eng = model_eng.chat(tokenizer_eng, img_path, ocr_type='ocr') if language in ["Hindi", "Both"]: img_cv = cv2.imread(img_path) res_hin = pytesseract.image_to_string(img_cv, config=tesseract_config) # Cleanup temporary file os.remove(img_path) return res_eng, res_hin # Keyword Search Functionality def ocr_and_search(image, language, keyword): english_text, hindi_text = perform_ocr(image, language) extracted_english = f"Extracted English Text:\n{english_text}" if english_text else "No English text extracted." extracted_hindi = f"Extracted Hindi Text:\n{hindi_text}" if hindi_text else "No Hindi text extracted." # Search for the keyword in the extracted text search_results = [] if keyword: if language in ["English", "Both"] and keyword.lower() in english_text.lower(): search_results.append(f"Keyword '{keyword}' found in English text.") if language in ["Hindi", "Both"] and keyword.lower() in hindi_text.lower(): search_results.append(f"Keyword '{keyword}' found in Hindi text.") search_output = "\n".join(search_results) if search_results else "No matches found." return extracted_english, extracted_hindi, search_output # Gradio Interface Setup with gr.Blocks() as app: gr.Markdown("### OCR Application") image_input = gr.Image(type="pil", label="Upload Image") language_selection = gr.Radio(choices=["English", "Hindi", "Both"], label="Select Language") keyword_input = gr.Textbox(placeholder="Enter keyword to search", label="Keyword Search") output_english = gr.Textbox(label="Extracted English Text", interactive=False) output_hindi = gr.Textbox(label="Extracted Hindi Text", interactive=False) output_search = gr.Textbox(label="Search Results", interactive=False) submit_button = gr.Button("Submit") submit_button.click(fn=ocr_and_search, inputs=[image_input, language_selection, keyword_input], outputs=[output_english, output_hindi, output_search]) # Launch the Gradio app app.launch()