import gradio as gr import numpy as np import tensorflow as tf from tensorflow import keras import tensorflow_hub as hub from PIL import Image # Load models model_initial = keras.models.load_model( "models/initial_model.h5", custom_objects={'KerasLayer': hub.KerasLayer} ) model_tumor = keras.models.load_model( "models/model_tumor.h5", custom_objects={'KerasLayer': hub.KerasLayer} ) model_stroke = keras.models.load_model( "models/model_stroke.h5", custom_objects={'KerasLayer': hub.KerasLayer} ) model_alzheimer = keras.models.load_model( "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer} ) class CombinedDiseaseModel(tf.keras.Model): def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke): super(CombinedDiseaseModel, self).__init__() self.model_initial = model_initial self.model_alzheimer = model_alzheimer self.model_tumor = model_tumor self.model_stroke = model_stroke self.disease_labels = ["Alzheimer's", 'No Disease', 'Stroke', 'Tumor'] self.sub_models = { "Alzheimer's": model_alzheimer, 'Tumor': model_tumor, 'Stroke': model_stroke } def call(self, inputs): initial_probs = self.model_initial(inputs, training=False) main_disease_idx = tf.argmax(initial_probs, axis=1) main_disease = self.disease_labels[main_disease_idx[0].numpy()] main_disease_prob = initial_probs[0, main_disease_idx[0]].numpy() if main_disease == 'No Disease': sub_category = "No Disease" sub_category_prob = main_disease_prob else: sub_model = self.sub_models[main_disease] sub_category_pred = sub_model(inputs, training=False) sub_category = tf.argmax(sub_category_pred, axis=1).numpy()[0] sub_category_prob = sub_category_pred[0, sub_category].numpy() if main_disease == "Alzheimer's": sub_category_label = ['Very Mild', 'Mild', 'Moderate'] elif main_disease == 'Tumor': sub_category_label = ['Glioma', 'Meningioma', 'Pituitary'] elif main_disease == 'Stroke': sub_category_label = ['Ischemic', 'Hemorrhagic'] sub_category = sub_category_label[sub_category] return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\nThe subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%." # Initialize the combined model cnn_model = CombinedDiseaseModel( model_initial=model_initial, model_alzheimer=model_alzheimer, model_tumor=model_tumor, model_stroke=model_stroke ) def process_image(image): image = image.resize((256, 256)) image.convert("RGB") image_array = np.array(image) / 255.0 image_array = np.expand_dims(image_array, axis=0) predictions = cnn_model(image_array) return predictions def gradio_interface(patient_info, query_type, image): if image is not None: image_response = process_image(image) response = f"Patient Info: {patient_info}\nQuery Type: {query_type}\n{image_response}" return response else: return "Please upload an image." # Create Gradio app iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox( label="Patient Information", placeholder="Enter patient details here...", lines=5, max_lines=10 ), gr.Textbox( label="Query Type" ), gr.Image( type="pil", label="Upload an Image", ) ], outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."), title="Medical Diagnosis with MRI", description="Upload MRI images and provide patient information for diagnosis.", ) iface.launch()