yashbyname commited on
Commit
07ac4d1
·
verified ·
1 Parent(s): 676fa4e

Update readme.md

Browse files
Files changed (1) hide show
  1. readme.md +47 -9
readme.md CHANGED
@@ -1,15 +1,53 @@
1
  # Handwritten Digit Generator
2
 
3
- A web application that generates handwritten digit images using a trained GAN model.
4
 
5
- ## Features
6
- - Generate 5 unique images for any digit (0-9)
7
- - Clean, responsive Gradio interface
8
- - Trained on MNIST dataset using PyTorch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  ## Usage
11
- 1. Select a digit from the dropdown
12
- 2. Click "Generate Images"
13
- 3. View the 5 generated digit images
14
 
15
- Built with PyTorch and Gradio.
 
 
 
 
 
 
 
1
  # Handwritten Digit Generator
2
 
3
+ A web application that generates handwritten digit images using a trained Conditional GAN model.
4
 
5
+ ## Time Constraints & Future Improvements
6
+
7
+ Due to time constraints during this contest, the model was trained for fewer epochs than ideal. Given more time, the following improvements and additional training steps would have been performed:
8
+
9
+ - **Extended Training**: Train the GAN for more epochs (50-100 instead of 10) to improve image quality and diversity
10
+ - **Hyperparameter Optimization**: Experiment with different learning rates, batch sizes, and optimizer settings
11
+ - **Advanced GAN Techniques**:
12
+ - Implement label smoothing for more stable training
13
+ - Add noise injection to discriminator inputs
14
+ - Use progressive growing or spectral normalization
15
+ - **Architecture Improvements**:
16
+ - Increase the size and complexity of generator and discriminator networks
17
+ - Explore ResNet or U-Net based architectures
18
+ - Add self-attention mechanisms
19
+ - **Training Stability**:
20
+ - Implement Wasserstein loss or LSGAN loss functions
21
+ - Use feature matching and minibatch discrimination
22
+ - Apply gradient penalty techniques
23
+ - **Evaluation & Fine-tuning**:
24
+ - Perform more extensive evaluation using FID and IS scores
25
+ - Fine-tune to reduce artifacts and improve digit clarity
26
+ - Add more sophisticated conditioning mechanisms
27
+ - **Alternative Architectures**:
28
+ - Explore Conditional GANs with attention mechanisms
29
+ - Implement VAE-GAN hybrid models
30
+ - Try diffusion-based generation approaches
31
+
32
+ ## Current Results
33
+
34
+ Despite the limited training time, the model successfully generates recognizable digits for all classes (0-9) with reasonable diversity, meeting the contest requirements.
35
+
36
+ ## Technical Details
37
+
38
+ - **Framework**: PyTorch
39
+ - **Dataset**: MNIST (28x28 grayscale)
40
+ - **Architecture**: Conditional GAN with label embedding
41
+ - **Training**: 10 epochs on Google Colab T4 GPU
42
+ - **Interface**: Gradio web application
43
+ - **Deployment**: Hugging Face Spaces
44
 
45
  ## Usage
 
 
 
46
 
47
+ 1. Select a digit (0-9) from the dropdown
48
+ 2. Click "Generate Images"
49
+ 3. View 5 unique generated images of the chosen digit
50
+
51
+ ---
52
+
53
+ *This README is uploaded for documentation and evaluation purposes.*