yashasgupta commited on
Commit
cfb6e62
·
verified ·
1 Parent(s): fa2ec69

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -19
app.py CHANGED
@@ -44,10 +44,14 @@ from langchain_community.document_loaders import PDFMinerLoader
44
  from langchain_text_splitters import NLTKTextSplitter
45
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
46
  from langchain_community.vectorstores import Chroma
 
 
 
47
 
48
  uploaded_file = st.file_uploader("Choose a pdf file",type = "pdf")
49
 
50
  if uploaded_file is not None:
 
51
  pdf_file = io.BytesIO(uploaded_file.read())
52
  pdf_loader = PDFMinerLoader(pdf_file)
53
  dat_nik = pdf_loader.load()
@@ -63,6 +67,24 @@ if uploaded_file is not None:
63
  db_connection = Chroma(persist_directory="./chroma_db_", embedding_function=embedding_model)
64
 
65
  retriever = db_connection.as_retriever(search_kwargs={"k": 5})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  # dat = PDFMinerLoader("2404.07143.pdf")
68
  # dat_nik =dat.load()
@@ -86,23 +108,5 @@ if uploaded_file is not None:
86
 
87
 
88
 
89
- from langchain_core.runnables import RunnablePassthrough #takes user's question.
90
-
91
- def format_docs(docs):
92
- return "\n\n".join(doc.page_content for doc in docs)
93
-
94
- # format chunks: takes the 5 results, combines all the chunks and displays one output.
95
- rag_chain = (
96
- {"context": retriever | format_docs, "question": RunnablePassthrough()}
97
- | chat_template
98
- | chat_model
99
- | output_parser
100
- )
101
 
102
- user_input = st.text_area("Ask Questions to AI")
103
- if st.button("Submit"):
104
- st.subheader(":green[Query:]")
105
- st.subheader(user_input)
106
- response = rag_chain.invoke(user_input)
107
- st.subheader(":green[Response:-]")
108
- st.write(response)
 
44
  from langchain_text_splitters import NLTKTextSplitter
45
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
46
  from langchain_community.vectorstores import Chroma
47
+ from langchain_core.runnables import RunnablePassthrough
48
+
49
+
50
 
51
  uploaded_file = st.file_uploader("Choose a pdf file",type = "pdf")
52
 
53
  if uploaded_file is not None:
54
+
55
  pdf_file = io.BytesIO(uploaded_file.read())
56
  pdf_loader = PDFMinerLoader(pdf_file)
57
  dat_nik = pdf_loader.load()
 
67
  db_connection = Chroma(persist_directory="./chroma_db_", embedding_function=embedding_model)
68
 
69
  retriever = db_connection.as_retriever(search_kwargs={"k": 5})
70
+
71
+ def format_docs(docs):
72
+ return "\n\n".join(doc.page_content for doc in docs)
73
+
74
+ rag_chain = (
75
+ {"context": retriever | format_docs, "question": RunnablePassthrough()}
76
+ | chat_template
77
+ | chat_model
78
+ | output_parser
79
+ )
80
+
81
+ user_input = st.text_area("Ask Questions to AI")
82
+ if st.button("Submit"):
83
+ st.subheader(":green[Query:]")
84
+ st.subheader(user_input)
85
+ response = rag_chain.invoke(user_input)
86
+ st.subheader(":green[Response:-]")
87
+ st.write(response)
88
 
89
  # dat = PDFMinerLoader("2404.07143.pdf")
90
  # dat_nik =dat.load()
 
108
 
109
 
110
 
111
+ #takes user's question.
 
 
 
 
 
 
 
 
 
 
 
112