yash commited on
Commit
8f88a50
·
1 Parent(s): f8ef591

remove unnacessary comments

Browse files
Files changed (1) hide show
  1. app.py +0 -90
app.py CHANGED
@@ -6,22 +6,7 @@ from diffusers import KDPM2DiscreteScheduler,KDPM2AncestralDiscreteScheduler,PN
6
  from diffusers import DPMSolverMultistepScheduler
7
  import random
8
 
9
- # pipe = StableDiffusionPipeline.from_pretrained(
10
- # "SG161222/Realistic_Vision_V5.1_noVAE",
11
- # torch_dtype=torch.float16,
12
- # use_safetensors=True,
13
- # ).to("cpu")
14
-
15
-
16
-
17
-
18
  def set_pipeline(model_id_repo,scheduler):
19
- # pipe = StableDiffusionPipeline.from_single_file(
20
- # "/home/ubuntu/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV51_v51VAE.safetensors",
21
- # # torch_dtype=torch.float16,
22
- # use_safetensors=True,
23
- # ).to("cpu")
24
-
25
 
26
  model_ids_dict = {
27
  "dreamshaper": "Lykon/DreamShaper",
@@ -34,12 +19,6 @@ def set_pipeline(model_id_repo,scheduler):
34
  print("model_repo :",model_repo)
35
 
36
 
37
- # pipe = StableDiffusionPipeline.from_pretrained(
38
- # model_repo,
39
- # # torch_dtype=torch.float16, # to run on cpu
40
- # use_safetensors=True,
41
- # ).to("cpu")
42
-
43
  pipe = StableDiffusionPipeline.from_pretrained(
44
  model_repo,
45
  # torch_dtype=torch.float16, # to run on cpu
@@ -68,10 +47,6 @@ def set_pipeline(model_id_repo,scheduler):
68
  else:
69
  pass
70
 
71
- # # prompt = "a photo of an astronaut riding a horse on mars"
72
- # # pipe.enable_attention_slicing()
73
- # image = pipe(prompt).images[0]
74
- # image.save("1.png")
75
  return pipe
76
 
77
 
@@ -88,10 +63,6 @@ def img_args(
88
  seed = 0
89
  ):
90
 
91
- print(model_id_repo)
92
- print(scheduler)
93
- print(prompt,"&&&&&&&&&&&&&&&&")
94
-
95
  pipe = set_pipeline(model_id_repo,scheduler)
96
 
97
  if seed == 0:
@@ -111,8 +82,6 @@ def img_args(
111
  num_images_per_prompt = num_images_per_prompt, # default 1
112
  generator = generator,
113
  ).images
114
- print(image,"#############")
115
- # image.save("1.png")
116
  return image
117
 
118
 
@@ -145,62 +114,3 @@ with block as image_gen:
145
  run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider],outputs=[out_img])
146
  image_gen.launch()
147
 
148
- # block = gr.Blocks().queue()
149
- # block.title = "Inpaint Anything"
150
- # with block as inpaint_anything_interface:
151
- # with gr.Column():
152
- # with gr.Row():
153
- # gr.Markdown("## Inpainting with Segment Anything (Multi Controlnet)")
154
- # with gr.Row():
155
- # with gr.Column():
156
- # # with gr.Row():
157
- # model_selection = gr.Dropdown(choices=["dreamshaper","deliberate","realisticVisionV51_v51VAE","revAnimated_v121Inp","runwayml","Realistic_Vision_V5_1_noVAE"],value = "Realistic_Vision_V5_1_noVAE",label="Models")
158
- # # scheduler = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value = "Euler a",label="Sampler")
159
- # input_image = gr.Image(type="numpy",label="input",height=400)
160
- # run_btn = gr.Button("Run Segment", elem_id="select_btn", variant="primary")
161
-
162
- # prompt = gr.Textbox(placeholder="what you want to generate")
163
- # guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=0, maximum=20.0, value=7.5, step=0.5)
164
- # inference_slider = gr.Slider(label="Guidance Scale", minimum=0, maximum=150, value=50, step=1)
165
- # with gr.Row():
166
- # canny_slider = gr.Slider(label="Canny Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
167
- # depth_slider = gr.Slider(label="Depth Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
168
- # seg_slider = gr.Slider(label="Segment Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
169
- # out_img = gr.Image(type="pil",label="output")
170
- # seed_slider = gr.Slider(label="Seed Slider",elem_id="expand_mask_iteration_count", minimum=0, maximum=25647981548564, value=0, step=1)
171
- # grn_btn = gr.Button("image generation", elem_id="select_btn", variant="primary")
172
- # # bru_btn = gr.Button("Brush generation", elem_id="select_btn", variant="primary")
173
- # with gr.Column():
174
- # scheduler = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value = "Euler a",label="Sampler")
175
- # # lora_chk = gr.Checkbox(label="Use Lora", elem_id="invert_chk", show_label=True, value=False, interactive=True)
176
- # # image_out = gr.Image(type="pil",label="Output")
177
- # sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
178
- # show_label=False, interactive=True,height=400)
179
- # mask_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary")
180
- # with gr.Column():
181
- # with gr.Row():
182
- # invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, value=True, interactive=True)
183
- # ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True)
184
- # lora_chk = gr.Checkbox(label="Use Lora", elem_id="invert_chk", show_label=True, value=False, interactive=True)
185
- # with gr.Column():
186
- # sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
187
- # show_label=False, interactive=True, height=480)
188
- # with gr.Column():
189
- # with gr.Row():
190
- # expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn")
191
- # # with gr.Column():
192
- # expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations",
193
- # elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1)
194
- # with gr.Row():
195
- # add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn")
196
- # apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn")
197
-
198
-
199
- # run_btn.click(fn=run_seg,inputs=[input_image],outputs=[sam_image])
200
- # mask_btn.click(fn=select_mask,inputs=[input_image, sam_image, invert_chk, ignore_black_chk,sel_mask], outputs=[sel_mask])
201
- # expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask])
202
- # apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask])
203
- # add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask])
204
- # grn_btn.click(fn=generate_image,inputs=[input_image,sam_image,prompt,seed_slider,canny_slider,depth_slider,seg_slider,model_selection,scheduler,guidance_scale_slider,inference_slider,lora_chk],outputs=[out_img])
205
- # bru_btn.click(fn=brush_geeration,inputs=[input_image,prompt],outputs=[out_img])
206
- # inpaint_anything_interface.launch()
 
6
  from diffusers import DPMSolverMultistepScheduler
7
  import random
8
 
 
 
 
 
 
 
 
 
 
9
  def set_pipeline(model_id_repo,scheduler):
 
 
 
 
 
 
10
 
11
  model_ids_dict = {
12
  "dreamshaper": "Lykon/DreamShaper",
 
19
  print("model_repo :",model_repo)
20
 
21
 
 
 
 
 
 
 
22
  pipe = StableDiffusionPipeline.from_pretrained(
23
  model_repo,
24
  # torch_dtype=torch.float16, # to run on cpu
 
47
  else:
48
  pass
49
 
 
 
 
 
50
  return pipe
51
 
52
 
 
63
  seed = 0
64
  ):
65
 
 
 
 
 
66
  pipe = set_pipeline(model_id_repo,scheduler)
67
 
68
  if seed == 0:
 
82
  num_images_per_prompt = num_images_per_prompt, # default 1
83
  generator = generator,
84
  ).images
 
 
85
  return image
86
 
87
 
 
114
  run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider],outputs=[out_img])
115
  image_gen.launch()
116