File size: 4,874 Bytes
54da33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr

# Set the random seed for reproducibility
torch.random.manual_seed(0)

# Load the model and tokenizer from Hugging Face
model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Phi-3.5-mini-instruct",
    device_map="cpu",
    # device_map="cuda",
    torch_dtype="auto",
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")

# Create a text-generation pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

# Define the pipeline arguments
generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}

chat_session = {}


# Function to generate responses based on the entire chat history
def generate_response(chat_history):
    messages = [{"role": "system", "content": "You are a helpful AI assistant."}]
    
    # Append the chat history (user and assistant messages)
    for user_message, assistant_message in chat_history:
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": assistant_message})
    
    # Generate response for the latest user message
    user_input = chat_history[-1][0]  # The latest user message
    messages.append({"role": "user", "content": user_input})
    response = pipe(messages, **generation_args)
    
    # Append the assistant response to the chat history
    assistant_response = response[0]["generated_text"]
    return assistant_response


# Function to update chat
def chat(user_message,history,session):

    if session == "":
        return history, "Error: Session ID cannot be empty. Please start a new chat."
        

    history = history or []  # Initialize history if empty
        
    # Generate assistant response based on the history
    assistant_message = generate_response(history + [(user_message, "")])
    
    # Append user and assistant messages to history
    history.append([user_message, assistant_message])
    chat_session[session] = history

    return history, ""


def get_session_list():
    return list(chat_session.keys())

# Function to create new chat and return updated session list
def new_chat():
    session = f'session:{len(chat_session) + 1}'
    chat_session[session] = []  # Initialize empty chat history for the new session
    return [], "", session, get_session_list()  # Return the new session and update session list

# Function to fetch old chat session history
def old_chat(sessions):
    return chat_session.get(sessions, [])

# Function to reset chat history
def reset_button():
    global chat_session  # Access the global chat_session
    chat_session = {}  # Reset the global chat_session
    return [], "", "",[],""  # Reset chat history, session, and input field



with gr.Blocks(css=".small-btn {width: 100px !important;} .large-textbox {width: 100% !important;}") as demo:
    gr.Markdown("# 🤖 AI Assistant")

    with gr.Column():
        new_chat_button = gr.Button("Start New Chat")
    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(elem_id="chatbot")
            with gr.Row():
                with gr.Column(scale=5):
                    user_input = gr.Textbox(
                        show_label=False,
                        placeholder="Type your message here...",
                        container=False,
                        elem_classes="large-textbox"
                    )
                with gr.Column(scale=1):
                    send_button = gr.Button("Send", variant="primary", elem_classes="small-btn")
            
        with gr.Column(scale=1):
            session = gr.Textbox(label="Current Session", interactive=False)
            session_list = gr.Dropdown(label="Available Sessions", choices=get_session_list(), allow_custom_value=True)
            load_session = gr.Textbox(label="Load Session", interactive=True)
            with gr.Row():
                get_old_session_button = gr.Button("Load Session")
                avail_session = gr.Button("Get Available Session")
            reset_button_ = gr.Button("Reset All", variant="secondary")

    # Button click actions
    user_input.submit(chat, [user_input, chatbot, session], [chatbot, user_input])
    send_button.click(chat, [user_input, chatbot, session], [chatbot, user_input])  # Send button
    new_chat_button.click(new_chat, [], [chatbot, user_input, session, session_list])  # Also update the session list
    get_old_session_button.click(old_chat, [load_session], [chatbot])
    reset_button_.click(reset_button, [], [chatbot, session, user_input, session_list, load_session])
    avail_session.click(get_session_list, [], [session_list])

# Launch the Gradio app
demo.launch()