Spaces:
Sleeping
Sleeping
Update SAM2/sam2/utils/misc.py
Browse files- SAM2/sam2/utils/misc.py +243 -242
SAM2/sam2/utils/misc.py
CHANGED
@@ -1,242 +1,243 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import os
|
8 |
-
import warnings
|
9 |
-
from threading import Thread
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import torch
|
13 |
-
from PIL import Image
|
14 |
-
from tqdm import tqdm
|
15 |
-
|
16 |
-
|
17 |
-
def get_sdpa_settings():
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
20 |
-
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
21 |
-
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
22 |
-
if not use_flash_attn:
|
23 |
-
warnings.warn(
|
24 |
-
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
25 |
-
category=UserWarning,
|
26 |
-
stacklevel=2,
|
27 |
-
)
|
28 |
-
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
29 |
-
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
30 |
-
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
31 |
-
if pytorch_version < (2, 2):
|
32 |
-
warnings.warn(
|
33 |
-
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
34 |
-
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
35 |
-
category=UserWarning,
|
36 |
-
stacklevel=2,
|
37 |
-
)
|
38 |
-
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
39 |
-
else:
|
40 |
-
old_gpu = True
|
41 |
-
use_flash_attn = False
|
42 |
-
math_kernel_on = True
|
43 |
-
|
44 |
-
#guo yansong: TODO 本机可能不支持Flash Attention,所以这里强制不用Flash Attention
|
45 |
-
#return True, False, True
|
46 |
-
|
47 |
-
return old_gpu, use_flash_attn, math_kernel_on
|
48 |
-
|
49 |
-
|
50 |
-
def get_connected_components(mask):
|
51 |
-
"""
|
52 |
-
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
53 |
-
|
54 |
-
Inputs:
|
55 |
-
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
56 |
-
background.
|
57 |
-
|
58 |
-
Outputs:
|
59 |
-
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
60 |
-
for foreground pixels and 0 for background pixels.
|
61 |
-
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
62 |
-
components for foreground pixels and 0 for background pixels.
|
63 |
-
"""
|
64 |
-
from sam2 import _C
|
65 |
-
|
66 |
-
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
67 |
-
|
68 |
-
|
69 |
-
def mask_to_box(masks: torch.Tensor):
|
70 |
-
"""
|
71 |
-
compute bounding box given an input mask
|
72 |
-
|
73 |
-
Inputs:
|
74 |
-
- masks: [B, 1, H, W] boxes, dtype=torch.Tensor
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
78 |
-
"""
|
79 |
-
B, _, h, w = masks.shape
|
80 |
-
device = masks.device
|
81 |
-
xs = torch.arange(w, device=device, dtype=torch.int32)
|
82 |
-
ys = torch.arange(h, device=device, dtype=torch.int32)
|
83 |
-
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
84 |
-
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
85 |
-
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
86 |
-
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
87 |
-
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
88 |
-
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
89 |
-
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
90 |
-
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
91 |
-
|
92 |
-
return bbox_coords
|
93 |
-
|
94 |
-
|
95 |
-
def _load_img_as_tensor(img_path, image_size):
|
96 |
-
img_pil = Image.open(img_path)
|
97 |
-
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
98 |
-
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
99 |
-
img_np = img_np / 255.0
|
100 |
-
else:
|
101 |
-
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
102 |
-
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
103 |
-
video_width, video_height = img_pil.size # the original video size
|
104 |
-
return img, video_height, video_width
|
105 |
-
|
106 |
-
|
107 |
-
class AsyncVideoFrameLoader:
|
108 |
-
"""
|
109 |
-
A list of video frames to be load asynchronously without blocking session start.
|
110 |
-
"""
|
111 |
-
|
112 |
-
def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std):
|
113 |
-
self.img_paths = img_paths
|
114 |
-
self.image_size = image_size
|
115 |
-
self.offload_video_to_cpu = offload_video_to_cpu
|
116 |
-
self.img_mean = img_mean
|
117 |
-
self.img_std = img_std
|
118 |
-
# items in `self._images` will be loaded asynchronously
|
119 |
-
self.images = [None] * len(img_paths)
|
120 |
-
# catch and raise any exceptions in the async loading thread
|
121 |
-
self.exception = None
|
122 |
-
# video_height and video_width be filled when loading the first image
|
123 |
-
self.video_height = None
|
124 |
-
self.video_width = None
|
125 |
-
|
126 |
-
# load the first frame to fill video_height and video_width and also
|
127 |
-
# to cache it (since it's most likely where the user will click)
|
128 |
-
self.__getitem__(0)
|
129 |
-
|
130 |
-
# load the rest of frames asynchronously without blocking the session start
|
131 |
-
def _load_frames():
|
132 |
-
try:
|
133 |
-
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
134 |
-
self.__getitem__(n)
|
135 |
-
except Exception as e:
|
136 |
-
self.exception = e
|
137 |
-
|
138 |
-
self.thread = Thread(target=_load_frames, daemon=True)
|
139 |
-
self.thread.start()
|
140 |
-
|
141 |
-
def __getitem__(self, index):
|
142 |
-
if self.exception is not None:
|
143 |
-
raise RuntimeError("Failure in frame loading thread") from self.exception
|
144 |
-
|
145 |
-
img = self.images[index]
|
146 |
-
if img is not None:
|
147 |
-
return img
|
148 |
-
|
149 |
-
img, video_height, video_width = _load_img_as_tensor(
|
150 |
-
self.img_paths[index], self.image_size
|
151 |
-
)
|
152 |
-
self.video_height = video_height
|
153 |
-
self.video_width = video_width
|
154 |
-
# normalize by mean and std
|
155 |
-
img -= self.img_mean
|
156 |
-
img /= self.img_std
|
157 |
-
if not self.offload_video_to_cpu:
|
158 |
-
img = img.cuda(non_blocking=True)
|
159 |
-
self.images[index] = img
|
160 |
-
return img
|
161 |
-
|
162 |
-
def __len__(self):
|
163 |
-
return len(self.images)
|
164 |
-
|
165 |
-
|
166 |
-
def load_video_frames(
|
167 |
-
video_path,
|
168 |
-
image_size,
|
169 |
-
offload_video_to_cpu,
|
170 |
-
img_mean=(0.485, 0.456, 0.406),
|
171 |
-
img_std=(0.229, 0.224, 0.225),
|
172 |
-
async_loading_frames=False,
|
173 |
-
):
|
174 |
-
"""
|
175 |
-
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
176 |
-
|
177 |
-
The frames are resized to image_size x image_size and are loaded to GPU if
|
178 |
-
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
179 |
-
|
180 |
-
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
181 |
-
"""
|
182 |
-
if isinstance(video_path, str) and os.path.isdir(video_path):
|
183 |
-
jpg_folder = video_path
|
184 |
-
else:
|
185 |
-
raise NotImplementedError("Only JPEG frames are supported at this moment")
|
186 |
-
|
187 |
-
|
188 |
-
frame_names = [
|
189 |
-
p
|
190 |
-
for p in sorted(os.listdir(jpg_folder))
|
191 |
-
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
|
192 |
-
]
|
193 |
-
|
194 |
-
num_frames = len(frame_names)
|
195 |
-
if num_frames == 0:
|
196 |
-
raise RuntimeError(f"no images found in {jpg_folder}")
|
197 |
-
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
198 |
-
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
199 |
-
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
200 |
-
|
201 |
-
if async_loading_frames:
|
202 |
-
lazy_images = AsyncVideoFrameLoader(
|
203 |
-
img_paths, image_size, offload_video_to_cpu, img_mean, img_std
|
204 |
-
)
|
205 |
-
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
206 |
-
|
207 |
-
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
208 |
-
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
209 |
-
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
210 |
-
if not offload_video_to_cpu:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
images
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
#
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
mask
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import warnings
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
def get_sdpa_settings():
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
20 |
+
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
21 |
+
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
22 |
+
if not use_flash_attn:
|
23 |
+
warnings.warn(
|
24 |
+
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
25 |
+
category=UserWarning,
|
26 |
+
stacklevel=2,
|
27 |
+
)
|
28 |
+
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
29 |
+
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
30 |
+
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
31 |
+
if pytorch_version < (2, 2):
|
32 |
+
warnings.warn(
|
33 |
+
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
34 |
+
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
35 |
+
category=UserWarning,
|
36 |
+
stacklevel=2,
|
37 |
+
)
|
38 |
+
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
39 |
+
else:
|
40 |
+
old_gpu = True
|
41 |
+
use_flash_attn = False
|
42 |
+
math_kernel_on = True
|
43 |
+
|
44 |
+
#guo yansong: TODO 本机可能不支持Flash Attention,所以这里强制不用Flash Attention
|
45 |
+
#return True, False, True
|
46 |
+
|
47 |
+
return old_gpu, use_flash_attn, math_kernel_on
|
48 |
+
|
49 |
+
|
50 |
+
def get_connected_components(mask):
|
51 |
+
"""
|
52 |
+
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
53 |
+
|
54 |
+
Inputs:
|
55 |
+
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
56 |
+
background.
|
57 |
+
|
58 |
+
Outputs:
|
59 |
+
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
60 |
+
for foreground pixels and 0 for background pixels.
|
61 |
+
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
62 |
+
components for foreground pixels and 0 for background pixels.
|
63 |
+
"""
|
64 |
+
from sam2 import _C
|
65 |
+
|
66 |
+
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
67 |
+
|
68 |
+
|
69 |
+
def mask_to_box(masks: torch.Tensor):
|
70 |
+
"""
|
71 |
+
compute bounding box given an input mask
|
72 |
+
|
73 |
+
Inputs:
|
74 |
+
- masks: [B, 1, H, W] boxes, dtype=torch.Tensor
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
78 |
+
"""
|
79 |
+
B, _, h, w = masks.shape
|
80 |
+
device = masks.device
|
81 |
+
xs = torch.arange(w, device=device, dtype=torch.int32)
|
82 |
+
ys = torch.arange(h, device=device, dtype=torch.int32)
|
83 |
+
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
84 |
+
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
85 |
+
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
86 |
+
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
87 |
+
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
88 |
+
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
89 |
+
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
90 |
+
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
91 |
+
|
92 |
+
return bbox_coords
|
93 |
+
|
94 |
+
|
95 |
+
def _load_img_as_tensor(img_path, image_size):
|
96 |
+
img_pil = Image.open(img_path)
|
97 |
+
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
98 |
+
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
99 |
+
img_np = img_np / 255.0
|
100 |
+
else:
|
101 |
+
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
102 |
+
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
103 |
+
video_width, video_height = img_pil.size # the original video size
|
104 |
+
return img, video_height, video_width
|
105 |
+
|
106 |
+
|
107 |
+
class AsyncVideoFrameLoader:
|
108 |
+
"""
|
109 |
+
A list of video frames to be load asynchronously without blocking session start.
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std):
|
113 |
+
self.img_paths = img_paths
|
114 |
+
self.image_size = image_size
|
115 |
+
self.offload_video_to_cpu = offload_video_to_cpu
|
116 |
+
self.img_mean = img_mean
|
117 |
+
self.img_std = img_std
|
118 |
+
# items in `self._images` will be loaded asynchronously
|
119 |
+
self.images = [None] * len(img_paths)
|
120 |
+
# catch and raise any exceptions in the async loading thread
|
121 |
+
self.exception = None
|
122 |
+
# video_height and video_width be filled when loading the first image
|
123 |
+
self.video_height = None
|
124 |
+
self.video_width = None
|
125 |
+
|
126 |
+
# load the first frame to fill video_height and video_width and also
|
127 |
+
# to cache it (since it's most likely where the user will click)
|
128 |
+
self.__getitem__(0)
|
129 |
+
|
130 |
+
# load the rest of frames asynchronously without blocking the session start
|
131 |
+
def _load_frames():
|
132 |
+
try:
|
133 |
+
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
134 |
+
self.__getitem__(n)
|
135 |
+
except Exception as e:
|
136 |
+
self.exception = e
|
137 |
+
|
138 |
+
self.thread = Thread(target=_load_frames, daemon=True)
|
139 |
+
self.thread.start()
|
140 |
+
|
141 |
+
def __getitem__(self, index):
|
142 |
+
if self.exception is not None:
|
143 |
+
raise RuntimeError("Failure in frame loading thread") from self.exception
|
144 |
+
|
145 |
+
img = self.images[index]
|
146 |
+
if img is not None:
|
147 |
+
return img
|
148 |
+
|
149 |
+
img, video_height, video_width = _load_img_as_tensor(
|
150 |
+
self.img_paths[index], self.image_size
|
151 |
+
)
|
152 |
+
self.video_height = video_height
|
153 |
+
self.video_width = video_width
|
154 |
+
# normalize by mean and std
|
155 |
+
img -= self.img_mean
|
156 |
+
img /= self.img_std
|
157 |
+
if not self.offload_video_to_cpu:
|
158 |
+
img = img.cuda(non_blocking=True)
|
159 |
+
self.images[index] = img
|
160 |
+
return img
|
161 |
+
|
162 |
+
def __len__(self):
|
163 |
+
return len(self.images)
|
164 |
+
|
165 |
+
|
166 |
+
def load_video_frames(
|
167 |
+
video_path,
|
168 |
+
image_size,
|
169 |
+
offload_video_to_cpu,
|
170 |
+
img_mean=(0.485, 0.456, 0.406),
|
171 |
+
img_std=(0.229, 0.224, 0.225),
|
172 |
+
async_loading_frames=False,
|
173 |
+
):
|
174 |
+
"""
|
175 |
+
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
176 |
+
|
177 |
+
The frames are resized to image_size x image_size and are loaded to GPU if
|
178 |
+
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
179 |
+
|
180 |
+
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
181 |
+
"""
|
182 |
+
if isinstance(video_path, str) and os.path.isdir(video_path):
|
183 |
+
jpg_folder = video_path
|
184 |
+
else:
|
185 |
+
raise NotImplementedError("Only JPEG frames are supported at this moment")
|
186 |
+
|
187 |
+
|
188 |
+
frame_names = [
|
189 |
+
p
|
190 |
+
for p in sorted(os.listdir(jpg_folder))
|
191 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
|
192 |
+
]
|
193 |
+
|
194 |
+
num_frames = len(frame_names)
|
195 |
+
if num_frames == 0:
|
196 |
+
raise RuntimeError(f"no images found in {jpg_folder}")
|
197 |
+
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
198 |
+
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
199 |
+
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
200 |
+
|
201 |
+
if async_loading_frames:
|
202 |
+
lazy_images = AsyncVideoFrameLoader(
|
203 |
+
img_paths, image_size, offload_video_to_cpu, img_mean, img_std
|
204 |
+
)
|
205 |
+
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
206 |
+
|
207 |
+
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
208 |
+
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
209 |
+
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
210 |
+
if not offload_video_to_cpu:
|
211 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
212 |
+
images = images.to(device)
|
213 |
+
img_mean = img_mean.to(device)
|
214 |
+
img_std = img_std.to(device)
|
215 |
+
# normalize by mean and std
|
216 |
+
images -= img_mean
|
217 |
+
images /= img_std
|
218 |
+
return images, video_height, video_width
|
219 |
+
|
220 |
+
|
221 |
+
def fill_holes_in_mask_scores(mask, max_area):
|
222 |
+
"""
|
223 |
+
A post processor to fill small holes in mask scores with area under `max_area`.
|
224 |
+
"""
|
225 |
+
# Holes are those connected components in background with area <= self.max_area
|
226 |
+
# (background regions are those with mask scores <= 0)
|
227 |
+
assert max_area > 0, "max_area must be positive"
|
228 |
+
labels, areas = get_connected_components(mask <= 0)
|
229 |
+
is_hole = (labels > 0) & (areas <= max_area)
|
230 |
+
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
231 |
+
mask = torch.where(is_hole, 0.1, mask)
|
232 |
+
return mask
|
233 |
+
|
234 |
+
|
235 |
+
def concat_points(old_point_inputs, new_points, new_labels):
|
236 |
+
"""Add new points and labels to previous point inputs (add at the end)."""
|
237 |
+
if old_point_inputs is None:
|
238 |
+
points, labels = new_points, new_labels
|
239 |
+
else:
|
240 |
+
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
241 |
+
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
242 |
+
|
243 |
+
return {"point_coords": points, "point_labels": labels}
|