Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
from PIL import Image | |
import requests | |
ts_url = 'https://static.promediateknologi.id/crop/0x0:0x0/0x0/webp/photo/p2/01/2023/08/10/taylor-swift-3169402579.png' | |
ts_image = Image.open(requests.get(ts_url, stream=True).raw) | |
pg_url = "https://media.vogue.co.uk/photos/60f888a382e60565201c7cf4/2:3/w_2560%2Cc_limit/prince-Grorge-eigth-birthday-portrait.jpg" | |
pg_image = Image.open(requests.get(pg_url, stream=True).raw) | |
img_url = "https://thumbs.dreamstime.com/b/old-man-20313005.jpg" | |
img_image = Image.open(requests.get(img_url, stream=True).raw) | |
def age_emot_classifier(input_image): | |
# Init model, transforms | |
model_age = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') | |
transforms_age = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') | |
model_emot = ViTForImageClassification.from_pretrained("yangswei/visual-emotion-classification") | |
transforms_emot = ViTFeatureExtractor.from_pretrained("yangswei/visual-emotion-classification") | |
# Transform our image and pass it through the model | |
inputs_age = transforms_age(input_image, return_tensors='pt') | |
output_age = model_age(**inputs_age) | |
inputs_emot = transforms_emot(input_image, return_tensors='pt') | |
output_emot = model_emot(**inputs_emot) | |
# Predicted Class probabilities | |
proba_age = output_age.logits.softmax(1) | |
proba_emot = output_emot.logits.softmax(1) | |
# Predicted Classes With Confidences | |
labels_age = model_age.config.id2label | |
confidences_age = {labels_age[i]: proba_age[0][i].item() for i in range(len(labels_age))} | |
labels_emot = model_emot.config.id2label | |
confidences_emot = {labels_emot[i]: proba_emot[0][i].item() for i in range(len(labels_emot))} | |
return confidences_age, confidences_emot | |
output_age = gr.Label(num_top_classes=9, label="Age Prediction") | |
output_emotion = gr.Label(num_top_classes=8, label="Emotion Prediction") | |
with gr.Blocks(theme=gr.themes.Glass()) as demo: | |
gr.Interface(fn=age_emot_classifier, inputs="image", outputs=[output_age, output_emotion], | |
examples=[ts_image, pg_image, img_image]) | |
demo.launch() |