Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import cv2 | |
| import glob | |
| import os | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.utils.download_util import load_file_from_url | |
| from realesrgan import RealESRGANer | |
| from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
| def main(): | |
| """Inference demo for Real-ESRGAN.""" | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-i", "--input", type=str, default="inputs", help="Input image or folder" | |
| ) | |
| parser.add_argument( | |
| "-n", | |
| "--model_name", | |
| type=str, | |
| default="RealESRGAN_x4plus", | |
| help=( | |
| "Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | " | |
| "realesr-animevideov3 | realesr-general-x4v3" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "-o", "--output", type=str, default="results", help="Output folder" | |
| ) | |
| parser.add_argument( | |
| "-dn", | |
| "--denoise_strength", | |
| type=float, | |
| default=0.5, | |
| help=( | |
| "Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. " | |
| "Only used for the realesr-general-x4v3 model" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "-s", | |
| "--outscale", | |
| type=float, | |
| default=4, | |
| help="The final upsampling scale of the image", | |
| ) | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| default=None, | |
| help="[Option] Model path. Usually, you do not need to specify it", | |
| ) | |
| parser.add_argument( | |
| "--suffix", type=str, default="out", help="Suffix of the restored image" | |
| ) | |
| parser.add_argument( | |
| "-t", | |
| "--tile", | |
| type=int, | |
| default=0, | |
| help="Tile size, 0 for no tile during testing", | |
| ) | |
| parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding") | |
| parser.add_argument( | |
| "--pre_pad", type=int, default=0, help="Pre padding size at each border" | |
| ) | |
| parser.add_argument( | |
| "--face_enhance", action="store_true", help="Use GFPGAN to enhance face" | |
| ) | |
| parser.add_argument( | |
| "--fp32", | |
| action="store_true", | |
| help="Use fp32 precision during inference. Default: fp16 (half precision).", | |
| ) | |
| parser.add_argument( | |
| "--alpha_upsampler", | |
| type=str, | |
| default="realesrgan", | |
| help="The upsampler for the alpha channels. Options: realesrgan | bicubic", | |
| ) | |
| parser.add_argument( | |
| "--ext", | |
| type=str, | |
| default="auto", | |
| help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs", | |
| ) | |
| parser.add_argument( | |
| "-g", | |
| "--gpu-id", | |
| type=int, | |
| default=None, | |
| help="gpu device to use (default=None) can be 0,1,2 for multi-gpu", | |
| ) | |
| args = parser.parse_args() | |
| # determine models according to model names | |
| args.model_name = args.model_name.split(".")[0] | |
| if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" | |
| ] | |
| elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" | |
| ] | |
| elif ( | |
| args.model_name == "RealESRGAN_x4plus_anime_6B" | |
| ): # x4 RRDBNet model with 6 blocks | |
| model = RRDBNet( | |
| num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" | |
| ] | |
| elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=2, | |
| ) | |
| netscale = 2 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" | |
| ] | |
| elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=16, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" | |
| ] | |
| elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=32, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
| ] | |
| # determine model paths | |
| if args.model_path is not None: | |
| model_path = args.model_path | |
| else: | |
| model_path = os.path.join("weights", args.model_name + ".pth") | |
| if not os.path.isfile(model_path): | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| for url in file_url: | |
| # model_path will be updated | |
| model_path = load_file_from_url( | |
| url=url, | |
| model_dir=os.path.join(ROOT_DIR, "weights"), | |
| progress=True, | |
| file_name=None, | |
| ) | |
| # use dni to control the denoise strength | |
| dni_weight = None | |
| if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1: | |
| wdn_model_path = model_path.replace( | |
| "realesr-general-x4v3", "realesr-general-wdn-x4v3" | |
| ) | |
| model_path = [model_path, wdn_model_path] | |
| dni_weight = [args.denoise_strength, 1 - args.denoise_strength] | |
| # restorer | |
| upsampler = RealESRGANer( | |
| scale=netscale, | |
| model_path=model_path, | |
| dni_weight=dni_weight, | |
| model=model, | |
| tile=args.tile, | |
| tile_pad=args.tile_pad, | |
| pre_pad=args.pre_pad, | |
| half=not args.fp32, | |
| gpu_id=args.gpu_id, | |
| ) | |
| if args.face_enhance: # Use GFPGAN for face enhancement | |
| from gfpgan import GFPGANer | |
| face_enhancer = GFPGANer( | |
| model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", | |
| upscale=args.outscale, | |
| arch="clean", | |
| channel_multiplier=2, | |
| bg_upsampler=upsampler, | |
| ) | |
| os.makedirs(args.output, exist_ok=True) | |
| if os.path.isfile(args.input): | |
| paths = [args.input] | |
| else: | |
| paths = sorted(glob.glob(os.path.join(args.input, "*"))) | |
| for idx, path in enumerate(paths): | |
| imgname, extension = os.path.splitext(os.path.basename(path)) | |
| print("Testing", idx, imgname) | |
| img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
| if len(img.shape) == 3 and img.shape[2] == 4: | |
| img_mode = "RGBA" | |
| else: | |
| img_mode = None | |
| try: | |
| if args.face_enhance: | |
| _, _, output = face_enhancer.enhance( | |
| img, has_aligned=False, only_center_face=False, paste_back=True | |
| ) | |
| else: | |
| output, _ = upsampler.enhance(img, outscale=args.outscale) | |
| except RuntimeError as error: | |
| print("Error", error) | |
| print( | |
| "If you encounter CUDA out of memory, try to set --tile with a smaller number." | |
| ) | |
| else: | |
| if args.ext == "auto": | |
| extension = extension[1:] | |
| else: | |
| extension = args.ext | |
| if img_mode == "RGBA": # RGBA images should be saved in png format | |
| extension = "png" | |
| if args.suffix == "": | |
| save_path = os.path.join(args.output, f"{imgname}.{extension}") | |
| else: | |
| save_path = os.path.join( | |
| args.output, f"{imgname}_{args.suffix}.{extension}" | |
| ) | |
| cv2.imwrite(save_path, output) | |
| if __name__ == "__main__": | |
| main() | |