Spaces:
Running
on
Zero
Running
on
Zero
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import glob | |
| import os | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.utils.download_util import load_file_from_url | |
| from realesrgan import RealESRGANer | |
| from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
| def realEsrgan( | |
| model_name="RealESRGAN_x4plus_anime_6B", | |
| model_path=None, | |
| input_dir="inputs", | |
| output_dir="results", | |
| denoise_strength=0.5, | |
| outscale=4, | |
| suffix="out", | |
| tile=200, | |
| tile_pad=10, | |
| pre_pad=0, | |
| face_enhance=True, | |
| alpha_upsampler="realsrgan", | |
| out_ext="auto", | |
| fp32=True, | |
| gpu_id=None, | |
| ): | |
| # determine models according to model names | |
| model_name = model_name.split(".")[0] | |
| if model_name == "RealESRGAN_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" | |
| ] | |
| elif model_name == "RealESRNet_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" | |
| ] | |
| elif model_name == "RealESRGAN_x4plus_anime_6B": # x4 RRDBNet model with 6 blocks | |
| model = RRDBNet( | |
| num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" | |
| ] | |
| elif model_name == "RealESRGAN_x2plus": # x2 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=2, | |
| ) | |
| netscale = 2 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" | |
| ] | |
| elif model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=16, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" | |
| ] | |
| elif model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=32, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
| ] | |
| # determine model paths | |
| if model_path is None: | |
| model_path = os.path.join("weights", model_name + ".pth") | |
| if not os.path.isfile(model_path): | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| for url in file_url: | |
| # model_path will be updated | |
| model_path = load_file_from_url( | |
| url=url, | |
| model_dir=os.path.join(ROOT_DIR, "weights"), | |
| progress=True, | |
| file_name=None, | |
| ) | |
| # use dni to control the denoise strength | |
| dni_weight = None | |
| if model_name == "realesr-general-x4v3" and denoise_strength != 1: | |
| wdn_model_path = model_path.replace( | |
| "realesr-general-x4v3", "realesr-general-wdn-x4v3" | |
| ) | |
| model_path = [model_path, wdn_model_path] | |
| dni_weight = [denoise_strength, 1 - denoise_strength] | |
| # restorer | |
| upsampler = RealESRGANer( | |
| scale=netscale, | |
| model_path=model_path, | |
| dni_weight=dni_weight, | |
| model=model, | |
| tile=tile, | |
| tile_pad=tile_pad, | |
| pre_pad=pre_pad, | |
| half=not fp32, | |
| gpu_id=gpu_id, | |
| ) | |
| if face_enhance: # Use GFPGAN for face enhancement | |
| from gfpgan import GFPGANer | |
| face_enhancer = GFPGANer( | |
| model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", | |
| upscale=outscale, | |
| arch="clean", | |
| channel_multiplier=2, | |
| bg_upsampler=upsampler, | |
| ) | |
| os.makedirs(output_dir, exist_ok=True) | |
| if not isinstance(input_dir, list): | |
| paths = [input_dir] | |
| else: | |
| paths = sorted(glob.glob(os.path.join(input_dir, "*"))) | |
| Imgs = [] | |
| for idx, path in enumerate(paths): | |
| print(f"Scaling x{outscale}:", path) | |
| if isinstance(path, Image.Image): | |
| img = path | |
| img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) | |
| imgname = f"img_{idx}" | |
| else: | |
| imgname, extension = os.path.splitext(os.path.basename(path)) | |
| img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
| if len(img.shape) == 3 and img.shape[2] == 4: | |
| img_mode = "RGBA" | |
| else: | |
| img_mode = None | |
| try: | |
| if face_enhance: | |
| _, _, output = face_enhancer.enhance( | |
| img, has_aligned=False, only_center_face=False, paste_back=True | |
| ) | |
| else: | |
| output, _ = upsampler.enhance(img, outscale=outscale) | |
| except RuntimeError as error: | |
| print("Error", error) | |
| print( | |
| "If you encounter CUDA or RAM out of memory, try to set --tile with a smaller number." | |
| ) | |
| else: | |
| # if out_ext == "auto": | |
| # extension = extension[1:] | |
| # else: | |
| # extension = out_ext | |
| # if img_mode == "RGBA": # RGBA images should be saved in png format | |
| # extension = "png" | |
| # if suffix == "": | |
| # save_path = os.path.join(output_dir, f"{imgname}.{extension}") | |
| # else: | |
| # save_path = os.path.join(output_dir, f"{imgname}_{suffix}.{extension}") | |
| # | |
| # cv2.imwrite(save_path, output) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| img = Image.fromarray(img) | |
| Imgs.append(img) | |
| return Imgs | |