Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import PretrainedConfig, PreTrainedModel, T5EncoderModel, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import copy
|
7 |
+
|
8 |
+
keep_layer_count=6
|
9 |
+
|
10 |
+
class ByT5ForTextGeotaggingConfig(PretrainedConfig):
|
11 |
+
model_type = "byt5_for_text)geotagging"
|
12 |
+
|
13 |
+
def __init__(self, n_clusters, model_name_or_path, class_to_location=None, **kwargs):
|
14 |
+
super(ByT5ForTextGeotaggingConfig, self).__init__(**kwargs)
|
15 |
+
self.n_clusters = n_clusters
|
16 |
+
self.model_name_or_path = model_name_or_path
|
17 |
+
self.class_to_location = class_to_location or {}
|
18 |
+
|
19 |
+
|
20 |
+
def to_diff_dict(self):
|
21 |
+
# Convert the configuration to a dictionary
|
22 |
+
config_dict = self.to_dict()
|
23 |
+
|
24 |
+
# Get the default configuration for comparison
|
25 |
+
default_config_dict = PretrainedConfig().to_dict()
|
26 |
+
|
27 |
+
# Return the differences
|
28 |
+
diff_dict = {k: v for k, v in config_dict.items() if k not in default_config_dict or v != default_config_dict[k]}
|
29 |
+
|
30 |
+
return diff_dict
|
31 |
+
|
32 |
+
|
33 |
+
def deleteEncodingLayers(model, num_layers_to_keep): # must pass in the full bert model
|
34 |
+
oldModuleList = model.encoder.block
|
35 |
+
newModuleList = torch.nn.ModuleList()
|
36 |
+
|
37 |
+
# Now iterate over all layers, only keepign only the relevant layers.
|
38 |
+
for i in range(0, num_layers_to_keep):
|
39 |
+
newModuleList.append(oldModuleList[i])
|
40 |
+
|
41 |
+
# create a copy of the model, modify it with the new list, and return
|
42 |
+
copyOfModel = copy.deepcopy(model)
|
43 |
+
copyOfModel.encoder.block = newModuleList
|
44 |
+
|
45 |
+
return copyOfModel
|
46 |
+
|
47 |
+
class ByT5ForTextGeotagging(PreTrainedModel):
|
48 |
+
config_class = ByT5ForTextGeotaggingConfig
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super(ByT5ForTextGeotagging, self).__init__(config)
|
52 |
+
|
53 |
+
self.byt5 = T5EncoderModel.from_pretrained(config.model_name_or_path)
|
54 |
+
if keep_layer_count is not None:
|
55 |
+
self.byt5 = deleteEncodingLayers(self.byt5, keep_layer_count)
|
56 |
+
|
57 |
+
hidden_size = self.byt5.config.d_model
|
58 |
+
self.fc3 = nn.Linear(hidden_size, config.n_clusters)
|
59 |
+
|
60 |
+
def forward(self, input, return_coordinates=False):
|
61 |
+
input = self.byt5(input[:, 0, :].squeeze(1))['last_hidden_state']
|
62 |
+
input = input[:, 0, :].squeeze(1)
|
63 |
+
logits = self.fc3(input)
|
64 |
+
|
65 |
+
if return_coordinates:
|
66 |
+
class_idx = torch.argmax(logits, dim=1).item()
|
67 |
+
coordinates = self.config.class_to_location.get(str(class_idx))
|
68 |
+
return logits, coordinates
|
69 |
+
else:
|
70 |
+
return logits
|
71 |
+
|
72 |
+
def geolocate_text_byt5(text):
|
73 |
+
input_tensor = byt5_tokenizer(text, return_tensors="pt", truncation=True, max_length=140)['input_ids']
|
74 |
+
logits, (lat, lon) = model(input_tensor.unsqueeze(0), return_coordinates=True)
|
75 |
+
return lat, lon
|
76 |
+
|
77 |
+
|
78 |
+
model = ByT5ForTextGeotagging.from_pretrained("byt5-geotagging-spanish")
|
79 |
+
|
80 |
+
#text = "¡Barcelona es increíble! #VacacionesEnEspaña"
|
81 |
+
|
82 |
+
# Streamlit interface
|
83 |
+
st.title('GeoTagging using ByT5')
|
84 |
+
text_input = st.text_input('Enter your text:')
|
85 |
+
if text_input:
|
86 |
+
location = geolocate_text_byt5(text_input)
|
87 |
+
st.write('Predicted Location: ', location)
|