yachay's picture
Update app.py
c9c4318
raw
history blame
4.56 kB
# Import necessary libraries
import streamlit as st
import pandas as pd
from transformers import PretrainedConfig, PreTrainedModel, T5EncoderModel, AutoTokenizer
import torch
import torch.nn as nn
import copy
import pydeck as pdk
keep_layer_count=6
byt5_tokenizer = AutoTokenizer.from_pretrained("yachay/byt5-geotagging-es", token="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")
class ByT5ForTextGeotaggingConfig(PretrainedConfig):
model_type = "byt5_for_text_geotagging"
def __init__(self, n_clusters, model_name_or_path, class_to_location=None, **kwargs):
super(ByT5ForTextGeotaggingConfig, self).__init__(**kwargs)
self.n_clusters = n_clusters
self.model_name_or_path = model_name_or_path
self.class_to_location = class_to_location or {}
def to_diff_dict(self):
# Convert the configuration to a dictionary
config_dict = self.to_dict()
# Get the default configuration for comparison
default_config_dict = PretrainedConfig().to_dict()
# Return the differences
diff_dict = {k: v for k, v in config_dict.items() if k not in default_config_dict or v != default_config_dict[k]}
return diff_dict
def deleteEncodingLayers(model, num_layers_to_keep): # must pass in the full bert model
oldModuleList = model.encoder.block
newModuleList = torch.nn.ModuleList()
# Now iterate over all layers, only keepign only the relevant layers.
for i in range(0, num_layers_to_keep):
newModuleList.append(oldModuleList[i])
# create a copy of the model, modify it with the new list, and return
copyOfModel = copy.deepcopy(model)
copyOfModel.encoder.block = newModuleList
return copyOfModel
class ByT5ForTextGeotagging(PreTrainedModel):
config_class = ByT5ForTextGeotaggingConfig
def __init__(self, config):
super(ByT5ForTextGeotagging, self).__init__(config)
self.byt5 = T5EncoderModel.from_pretrained(config.model_name_or_path)
if keep_layer_count is not None:
self.byt5 = deleteEncodingLayers(self.byt5, keep_layer_count)
hidden_size = self.byt5.config.d_model
self.fc3 = nn.Linear(hidden_size, config.n_clusters)
def forward(self, input, return_coordinates=False):
input = self.byt5(input[:, 0, :].squeeze(1))['last_hidden_state']
input = input[:, 0, :].squeeze(1)
logits = self.fc3(input)
if return_coordinates:
class_idx = torch.argmax(logits, dim=1).item()
coordinates = self.config.class_to_location.get(str(class_idx))
return logits, coordinates
else:
return logits
def geolocate_text_byt5(text):
input_tensor = byt5_tokenizer(text, return_tensors="pt", truncation=True, max_length=140)['input_ids']
logits, (lat, lon) = model(input_tensor.unsqueeze(0), return_coordinates=True)
return lat, lon
model = ByT5ForTextGeotagging.from_pretrained("yachay/byt5-geotagging-es", token="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")
example_texts = [
"Disfrutando de una paella deliciosa en las playas de #Valencia 🥘☀️",
"La arquitectura de #Tokio es realmente algo fuera de este mundo 🌆🇯🇵",
"Escuchando jazz en un café acogedor en el corazón de #NuevaOrleans 🎷🎶",
"Los atardeceres en #CapeTown con la vista del Monte Table son inolvidables 🌅🇿🇦",
"Nada se compara con caminar por las históricas calles de #Roma 🏛️🍕"
]
# Streamlit interface
st.title('GeoTagging using ByT5')
# Buttons for example texts
for ex_text in example_texts:
if st.button(f'Example: "{ex_text[:30]}..."'):
text_input = ex_text
text_input = st.text_input('Enter your text:', value=text_input if 'text_input' in locals() else '')
if text_input:
location = geolocate_text_byt5(text_input)
st.write('Predicted Location: ', location)
# Render map with pydeck
map_data = pd.DataFrame(
[[location[0], location[1]]],
columns=["lat", "lon"]
)
st.pydeck_chart(pdk.Deck(
map_style='mapbox://styles/mapbox/light-v9',
initial_view_state=pdk.ViewState(
latitude=location[0],
longitude=location[1],
zoom=11,
pitch=50,
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=map_data,
get_position='[lon, lat]',
get_color='[200, 30, 0, 160]',
get_radius=200,
),
],
))