Spaces:
Build error
Build error
| # Import necessary libraries | |
| import streamlit as st | |
| import pandas as pd | |
| from transformers import PretrainedConfig, PreTrainedModel, T5EncoderModel, AutoTokenizer | |
| import torch | |
| import torch.nn as nn | |
| import copy | |
| import pydeck as pdk | |
| keep_layer_count=6 | |
| byt5_tokenizer = AutoTokenizer.from_pretrained("yachay/byt5-geotagging-es", token="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") | |
| class ByT5ForTextGeotaggingConfig(PretrainedConfig): | |
| model_type = "byt5_for_text_geotagging" | |
| def __init__(self, n_clusters, model_name_or_path, class_to_location=None, **kwargs): | |
| super(ByT5ForTextGeotaggingConfig, self).__init__(**kwargs) | |
| self.n_clusters = n_clusters | |
| self.model_name_or_path = model_name_or_path | |
| self.class_to_location = class_to_location or {} | |
| def to_diff_dict(self): | |
| # Convert the configuration to a dictionary | |
| config_dict = self.to_dict() | |
| # Get the default configuration for comparison | |
| default_config_dict = PretrainedConfig().to_dict() | |
| # Return the differences | |
| diff_dict = {k: v for k, v in config_dict.items() if k not in default_config_dict or v != default_config_dict[k]} | |
| return diff_dict | |
| def deleteEncodingLayers(model, num_layers_to_keep): # must pass in the full bert model | |
| oldModuleList = model.encoder.block | |
| newModuleList = torch.nn.ModuleList() | |
| # Now iterate over all layers, only keepign only the relevant layers. | |
| for i in range(0, num_layers_to_keep): | |
| newModuleList.append(oldModuleList[i]) | |
| # create a copy of the model, modify it with the new list, and return | |
| copyOfModel = copy.deepcopy(model) | |
| copyOfModel.encoder.block = newModuleList | |
| return copyOfModel | |
| class ByT5ForTextGeotagging(PreTrainedModel): | |
| config_class = ByT5ForTextGeotaggingConfig | |
| def __init__(self, config): | |
| super(ByT5ForTextGeotagging, self).__init__(config) | |
| self.byt5 = T5EncoderModel.from_pretrained(config.model_name_or_path) | |
| if keep_layer_count is not None: | |
| self.byt5 = deleteEncodingLayers(self.byt5, keep_layer_count) | |
| hidden_size = self.byt5.config.d_model | |
| self.fc3 = nn.Linear(hidden_size, config.n_clusters) | |
| def forward(self, input, return_coordinates=False): | |
| input = self.byt5(input[:, 0, :].squeeze(1))['last_hidden_state'] | |
| input = input[:, 0, :].squeeze(1) | |
| logits = self.fc3(input) | |
| if return_coordinates: | |
| class_idx = torch.argmax(logits, dim=1).item() | |
| coordinates = self.config.class_to_location.get(str(class_idx)) | |
| return logits, coordinates | |
| else: | |
| return logits | |
| def geolocate_text_byt5(text): | |
| input_tensor = byt5_tokenizer(text, return_tensors="pt", truncation=True, max_length=140)['input_ids'] | |
| logits, (lat, lon) = model(input_tensor.unsqueeze(0), return_coordinates=True) | |
| return lat, lon | |
| model = ByT5ForTextGeotagging.from_pretrained("yachay/byt5-geotagging-es", token="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") | |
| example_texts = [ | |
| "Disfrutando de una paella deliciosa en las playas de #Valencia 🥘☀️", | |
| "La arquitectura de #Tokio es realmente algo fuera de este mundo 🌆🇯🇵", | |
| "Escuchando jazz en un café acogedor en el corazón de #NuevaOrleans 🎷🎶", | |
| "Los atardeceres en #CapeTown con la vista del Monte Table son inolvidables 🌅🇿🇦", | |
| "Nada se compara con caminar por las históricas calles de #Roma 🏛️🍕" | |
| ] | |
| # Streamlit interface | |
| st.title('GeoTagging using ByT5') | |
| # Buttons for example texts | |
| for ex_text in example_texts: | |
| if st.button(f'Example: "{ex_text[:30]}..."'): | |
| text_input = ex_text | |
| text_input = st.text_input('Enter your text:', value=text_input if 'text_input' in locals() else '') | |
| if text_input: | |
| location = geolocate_text_byt5(text_input) | |
| st.write('Predicted Location: ', location) | |
| # Render map with pydeck | |
| map_data = pd.DataFrame( | |
| [[location[0], location[1]]], | |
| columns=["lat", "lon"] | |
| ) | |
| st.pydeck_chart(pdk.Deck( | |
| map_style='mapbox://styles/mapbox/light-v9', | |
| initial_view_state=pdk.ViewState( | |
| latitude=location[0], | |
| longitude=location[1], | |
| zoom=11, | |
| pitch=50, | |
| ), | |
| layers=[ | |
| pdk.Layer( | |
| 'ScatterplotLayer', | |
| data=map_data, | |
| get_position='[lon, lat]', | |
| get_color='[200, 30, 0, 160]', | |
| get_radius=200, | |
| ), | |
| ], | |
| )) |