import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def respond(message, history, token, model, system_message, max_tokens, temperature, top_p): """ Handle chat responses using the Hugging Face Inference API. Parameters: - message: The user's current message. - history: List of previous user-assistant message pairs. - token: HF API token for authentication. - model: Model name to use for inference. - system_message: System prompt to initialize the chat. - max_tokens: Maximum number of tokens to generate. - temperature: Sampling temperature. - top_p: Top-p (nucleus) sampling parameter. Yields: - Incremental responses for streaming in the chat interface. """ # Check for missing token if not token: yield "Please provide an HF API Token." return # Use default model if none provided if not model: model = "meta-llama/Llama-3.1-8B-Instruct" # Initialize the InferenceClient try: client = InferenceClient(model=model, token=token) except Exception as e: yield f"Error initializing client: {str(e)}" return # Build the message history, starting with the system message messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: # User message messages.append({"role": "user", "content": val[0]}) if val[1]: # Assistant message messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" # Make the API call with streaming try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): # Check for non-empty content in the delta if message.choices and message.choices[0].delta.content is not None: token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error during API call: {str(e)}" # Define input components token_input = gr.Textbox(type="password", label="HF API Token") model_input = gr.Textbox(label="Model Name", value="HuggingFaceH4/zephyr-7b-beta") """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ token_input, model_input, gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()