HF_Model_Test / app.py
xyizko's picture
Update app.py
5bacd80 verified
raw
history blame
2.67 kB
import gradio as gr
from huggingface_hub import InferenceClient
def respond(message, history, token, model, system_message, max_tokens, temperature, top_p):
"""
Handle chat responses using the Hugging Face Inference API.
"""
# Handle token and model defaults
token = token.strip()
model = model.strip()
# Default model selection logic
if not token:
model = "gpt2" # Default public model that doesn't require token
try:
client = InferenceClient(model=model)
except Exception as e:
yield f"Error initializing client: {str(e)}"
return
else:
model = model or "meta-llama/Llama-3.1-8B-Instruct" # Default private model
try:
client = InferenceClient(model=model, token=token)
except Exception as e:
yield f"Error initializing client: {str(e)}"
return
# Build message history
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Generate response
response = ""
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices and chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
yield response
except Exception as e:
yield f"API Error: {str(e)}"
# Input components
token_input = gr.Textbox(
type="password",
label="HF API Token (leave empty for public models)",
placeholder="hf_XXXXXXXXXXXX"
)
model_input = gr.Dropdown(
label="Model Name",
choices=[
"gpt2",
"HuggingFaceH4/zephyr-7b-beta",
"meta-llama/Llama-3.1-8B-Instruct"
],
value="gpt2"
)
# Chat interface
demo = gr.ChatInterface(
fn=respond,
title="HF Model Chat Interface",
description="Enter token for private models or use public models without token",
additional_inputs=[
token_input,
model_input,
gr.Textbox(value="You are helpful AI.", label="System Message"),
gr.Slider(1, 2048, value=512, label="Max Tokens"),
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()