Upload 4 files
Browse files- llama/__init__.py +6 -0
- llama/generation.py +85 -0
- llama/model.py +423 -0
- llama/tokenizer.py +40 -0
llama/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
+
|
| 4 |
+
from .generation import LLaMA
|
| 5 |
+
from .model import ModelArgs, Transformer, VisionModel
|
| 6 |
+
from .tokenizer import Tokenizer
|
llama/generation.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
+
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from llama.tokenizer import Tokenizer
|
| 9 |
+
from llama.model import Transformer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LLaMA:
|
| 13 |
+
def __init__(self, model: Transformer, tokenizer: Tokenizer, vision_model = None):
|
| 14 |
+
self.model = model
|
| 15 |
+
self.tokenizer = tokenizer
|
| 16 |
+
self.vision_model = vision_model
|
| 17 |
+
|
| 18 |
+
def generate(
|
| 19 |
+
self,
|
| 20 |
+
prompts: List[str],
|
| 21 |
+
imgs = None,
|
| 22 |
+
max_gen_len: int = 512,
|
| 23 |
+
temperature: float = 0.8,
|
| 24 |
+
top_p: float = 0.95,
|
| 25 |
+
) -> List[str]:
|
| 26 |
+
bsz = len(prompts)
|
| 27 |
+
params = self.model.params
|
| 28 |
+
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
| 29 |
+
|
| 30 |
+
mode = 'instruct'
|
| 31 |
+
vision_tokens = None
|
| 32 |
+
if imgs is not None and self.vision_model is not None:
|
| 33 |
+
vision_tokens = self.vision_model(imgs)
|
| 34 |
+
mode = 'caption'
|
| 35 |
+
|
| 36 |
+
prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
|
| 37 |
+
|
| 38 |
+
min_prompt_size = min([len(t) for t in prompt_tokens])
|
| 39 |
+
max_prompt_size = max([len(t) for t in prompt_tokens])
|
| 40 |
+
|
| 41 |
+
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
|
| 42 |
+
|
| 43 |
+
tokens = torch.full((bsz, total_len), self.tokenizer.pad_id).cuda().long()
|
| 44 |
+
for k, t in enumerate(prompt_tokens):
|
| 45 |
+
tokens[k, : len(t)] = torch.tensor(t).long()
|
| 46 |
+
input_text_mask = tokens != self.tokenizer.pad_id
|
| 47 |
+
start_pos = min_prompt_size
|
| 48 |
+
prev_pos = 0
|
| 49 |
+
for cur_pos in range(start_pos, total_len):
|
| 50 |
+
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos, vision_tokens, mode)
|
| 51 |
+
if temperature > 0:
|
| 52 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
| 53 |
+
next_token = sample_top_p(probs, top_p)
|
| 54 |
+
else:
|
| 55 |
+
next_token = torch.argmax(logits, dim=-1)
|
| 56 |
+
next_token = next_token.reshape(-1)
|
| 57 |
+
# only replace token if prompt has already been generated
|
| 58 |
+
next_token = torch.where(
|
| 59 |
+
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
|
| 60 |
+
)
|
| 61 |
+
tokens[:, cur_pos] = next_token
|
| 62 |
+
prev_pos = cur_pos
|
| 63 |
+
|
| 64 |
+
decoded = []
|
| 65 |
+
for i, t in enumerate(tokens.tolist()):
|
| 66 |
+
# cut to max gen len
|
| 67 |
+
t = t[len(prompt_tokens[i]) : len(prompt_tokens[i]) + max_gen_len]
|
| 68 |
+
# cut to eos tok if any
|
| 69 |
+
try:
|
| 70 |
+
t = t[: t.index(self.tokenizer.eos_id)]
|
| 71 |
+
except ValueError:
|
| 72 |
+
pass
|
| 73 |
+
decoded.append(self.tokenizer.decode(t))
|
| 74 |
+
return decoded
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def sample_top_p(probs, p):
|
| 78 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 79 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 80 |
+
mask = probs_sum - probs_sort > p
|
| 81 |
+
probs_sort[mask] = 0.0
|
| 82 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 83 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
| 84 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
| 85 |
+
return next_token
|
llama/model.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
+
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from torch import nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
import clip
|
| 13 |
+
from timm.models.vision_transformer import Block
|
| 14 |
+
|
| 15 |
+
import fairscale.nn.model_parallel.initialize as fs_init
|
| 16 |
+
from fairscale.nn.model_parallel.layers import (
|
| 17 |
+
ParallelEmbedding,
|
| 18 |
+
RowParallelLinear,
|
| 19 |
+
ColumnParallelLinear,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class ModelArgs:
|
| 24 |
+
dim: int = 512
|
| 25 |
+
n_layers: int = 8
|
| 26 |
+
n_heads: int = 8
|
| 27 |
+
vocab_size: int = -1 # defined later by tokenizer
|
| 28 |
+
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
| 29 |
+
norm_eps: float = 1e-5
|
| 30 |
+
|
| 31 |
+
max_batch_size: int = 32
|
| 32 |
+
max_seq_len: int = 2048
|
| 33 |
+
|
| 34 |
+
adapter_len: int = 10
|
| 35 |
+
adapter_layer: int = 30
|
| 36 |
+
|
| 37 |
+
cap_adapter_len: int = 10
|
| 38 |
+
cap_adapter_layer: int = 30
|
| 39 |
+
cap_vision_model: str = "ViT-L/14"
|
| 40 |
+
cap_vision_dim: int = 512
|
| 41 |
+
cap_vision_block: int = 2
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class RMSNorm(torch.nn.Module):
|
| 45 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.eps = eps
|
| 48 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 49 |
+
|
| 50 |
+
def _norm(self, x):
|
| 51 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
output = self._norm(x.float()).type_as(x)
|
| 55 |
+
return output * self.weight
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
| 59 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 60 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
| 61 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
| 62 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 63 |
+
return freqs_cis
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
| 67 |
+
ndim = x.ndim
|
| 68 |
+
assert 0 <= 1 < ndim
|
| 69 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
| 70 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
| 71 |
+
return freqs_cis.view(*shape)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def apply_rotary_emb(
|
| 75 |
+
xq: torch.Tensor,
|
| 76 |
+
xk: torch.Tensor,
|
| 77 |
+
freqs_cis: torch.Tensor,
|
| 78 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 79 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
| 80 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
| 81 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
| 82 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
| 83 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
| 84 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class Attention(nn.Module):
|
| 88 |
+
def __init__(self, args: ModelArgs):
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size()
|
| 92 |
+
self.head_dim = args.dim // args.n_heads
|
| 93 |
+
|
| 94 |
+
self.wq = ColumnParallelLinear(
|
| 95 |
+
args.dim,
|
| 96 |
+
args.n_heads * self.head_dim,
|
| 97 |
+
bias=False,
|
| 98 |
+
gather_output=False,
|
| 99 |
+
init_method=lambda x: x,
|
| 100 |
+
)
|
| 101 |
+
self.wk = ColumnParallelLinear(
|
| 102 |
+
args.dim,
|
| 103 |
+
args.n_heads * self.head_dim,
|
| 104 |
+
bias=False,
|
| 105 |
+
gather_output=False,
|
| 106 |
+
init_method=lambda x: x,
|
| 107 |
+
)
|
| 108 |
+
self.wv = ColumnParallelLinear(
|
| 109 |
+
args.dim,
|
| 110 |
+
args.n_heads * self.head_dim,
|
| 111 |
+
bias=False,
|
| 112 |
+
gather_output=False,
|
| 113 |
+
init_method=lambda x: x,
|
| 114 |
+
)
|
| 115 |
+
self.wo = RowParallelLinear(
|
| 116 |
+
args.n_heads * self.head_dim,
|
| 117 |
+
args.dim,
|
| 118 |
+
bias=False,
|
| 119 |
+
input_is_parallel=True,
|
| 120 |
+
init_method=lambda x: x,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
self.cache_k = torch.zeros(
|
| 124 |
+
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
| 125 |
+
).cuda()
|
| 126 |
+
self.cache_v = torch.zeros(
|
| 127 |
+
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
|
| 128 |
+
).cuda()
|
| 129 |
+
self.gate = torch.nn.Parameter(torch.zeros(1))
|
| 130 |
+
|
| 131 |
+
self.cap_gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1))
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
|
| 135 |
+
if mode == 'instruct':
|
| 136 |
+
return self.forward_instruct(x, start_pos, freqs_cis, mask, adapter)
|
| 137 |
+
elif mode == 'caption':
|
| 138 |
+
return self.forward_caption(x, start_pos, freqs_cis, mask, adapter)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def forward_instruct(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
|
| 142 |
+
bsz, seqlen, _ = x.shape
|
| 143 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
| 144 |
+
|
| 145 |
+
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 146 |
+
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 147 |
+
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 148 |
+
|
| 149 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
| 150 |
+
|
| 151 |
+
self.cache_k = self.cache_k.to(xq)
|
| 152 |
+
self.cache_v = self.cache_v.to(xq)
|
| 153 |
+
|
| 154 |
+
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
|
| 155 |
+
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
|
| 156 |
+
|
| 157 |
+
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
| 158 |
+
values = self.cache_v[:bsz, : start_pos + seqlen]
|
| 159 |
+
|
| 160 |
+
if adapter is not None:
|
| 161 |
+
adapter_len = adapter.shape[1]
|
| 162 |
+
adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
|
| 163 |
+
adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
|
| 164 |
+
adapter_k = adapter_k.transpose(1, 2)
|
| 165 |
+
adapter_v = adapter_v.transpose(1, 2)
|
| 166 |
+
xq = xq.transpose(1, 2)
|
| 167 |
+
keys = keys.transpose(1, 2)
|
| 168 |
+
values = values.transpose(1, 2)
|
| 169 |
+
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 170 |
+
if mask is not None:
|
| 171 |
+
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
| 172 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
| 173 |
+
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
| 174 |
+
if adapter is not None:
|
| 175 |
+
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 176 |
+
adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
|
| 177 |
+
output = output + torch.matmul(adapter_scores, adapter_v)
|
| 178 |
+
output = output.transpose(
|
| 179 |
+
1, 2
|
| 180 |
+
).contiguous().view(bsz, seqlen, -1)
|
| 181 |
+
|
| 182 |
+
return self.wo(output)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def forward_caption(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
|
| 186 |
+
bsz, seqlen, _ = x.shape
|
| 187 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
| 188 |
+
|
| 189 |
+
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 190 |
+
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 191 |
+
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 192 |
+
|
| 193 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
| 194 |
+
|
| 195 |
+
self.cache_k = self.cache_k.to(xq)
|
| 196 |
+
self.cache_v = self.cache_v.to(xq)
|
| 197 |
+
|
| 198 |
+
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
|
| 199 |
+
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
|
| 200 |
+
|
| 201 |
+
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
| 202 |
+
values = self.cache_v[:bsz, : start_pos + seqlen]
|
| 203 |
+
|
| 204 |
+
if adapter is not None:
|
| 205 |
+
adapter_len = adapter.shape[1]
|
| 206 |
+
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
|
| 207 |
+
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
|
| 208 |
+
adapter_k = adapter_k.transpose(1, 2)
|
| 209 |
+
adapter_v = adapter_v.transpose(1, 2)
|
| 210 |
+
xq = xq.transpose(1, 2)
|
| 211 |
+
keys = keys.transpose(1, 2)
|
| 212 |
+
values = values.transpose(1, 2)
|
| 213 |
+
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 214 |
+
if mask is not None:
|
| 215 |
+
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
|
| 216 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
| 217 |
+
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
|
| 218 |
+
if adapter is not None:
|
| 219 |
+
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 220 |
+
adapter_scores = self.cap_gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
|
| 221 |
+
|
| 222 |
+
output = output + torch.matmul(adapter_scores, adapter_v)
|
| 223 |
+
output = output.transpose(
|
| 224 |
+
1, 2
|
| 225 |
+
).contiguous().view(bsz, seqlen, -1)
|
| 226 |
+
|
| 227 |
+
return self.wo(output)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class FeedForward(nn.Module):
|
| 232 |
+
def __init__(
|
| 233 |
+
self,
|
| 234 |
+
dim: int,
|
| 235 |
+
hidden_dim: int,
|
| 236 |
+
multiple_of: int,
|
| 237 |
+
):
|
| 238 |
+
super().__init__()
|
| 239 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 240 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 241 |
+
|
| 242 |
+
self.w1 = ColumnParallelLinear(
|
| 243 |
+
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
|
| 244 |
+
)
|
| 245 |
+
self.w2 = RowParallelLinear(
|
| 246 |
+
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
|
| 247 |
+
)
|
| 248 |
+
self.w3 = ColumnParallelLinear(
|
| 249 |
+
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
def forward(self, x):
|
| 253 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class TransformerBlock(nn.Module):
|
| 257 |
+
def __init__(self, layer_id: int, args: ModelArgs):
|
| 258 |
+
super().__init__()
|
| 259 |
+
self.n_heads = args.n_heads
|
| 260 |
+
self.dim = args.dim
|
| 261 |
+
self.head_dim = args.dim // args.n_heads
|
| 262 |
+
self.attention = Attention(args)
|
| 263 |
+
self.feed_forward = FeedForward(
|
| 264 |
+
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of
|
| 265 |
+
)
|
| 266 |
+
self.layer_id = layer_id
|
| 267 |
+
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 268 |
+
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
| 269 |
+
|
| 270 |
+
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
|
| 271 |
+
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, adapter, mode=mode)
|
| 272 |
+
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
| 273 |
+
return out
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class Transformer(nn.Module):
|
| 277 |
+
def __init__(self, params: ModelArgs):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.params = params
|
| 280 |
+
self.vocab_size = params.vocab_size
|
| 281 |
+
self.n_layers = params.n_layers
|
| 282 |
+
|
| 283 |
+
self.tok_embeddings = ParallelEmbedding(
|
| 284 |
+
params.vocab_size, params.dim, init_method=lambda x: x
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
self.layers = torch.nn.ModuleList()
|
| 288 |
+
for layer_id in range(params.n_layers):
|
| 289 |
+
self.layers.append(TransformerBlock(layer_id, params))
|
| 290 |
+
|
| 291 |
+
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
| 292 |
+
self.output = ColumnParallelLinear(
|
| 293 |
+
params.dim, params.vocab_size, bias=False, init_method=lambda x: x
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
self.freqs_cis = precompute_freqs_cis(
|
| 297 |
+
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Note: this is only a preview of multimodal LLaMA-Adapter
|
| 301 |
+
# and requires more efforts to decouple LLaMA-Adapter from LLaMA.
|
| 302 |
+
# instruct model
|
| 303 |
+
self.adapter_query = nn.Embedding(params.adapter_len * params.adapter_layer, params.dim)
|
| 304 |
+
self.adapter_len = params.adapter_len
|
| 305 |
+
self.adapter_layer = params.adapter_layer
|
| 306 |
+
|
| 307 |
+
# caption model
|
| 308 |
+
self.cap_adapter_query = nn.Embedding(params.cap_adapter_len * params.cap_adapter_layer, params.dim)
|
| 309 |
+
self.cap_adapter_len = params.cap_adapter_len
|
| 310 |
+
self.cap_adapter_layer = params.cap_adapter_layer
|
| 311 |
+
|
| 312 |
+
@torch.inference_mode()
|
| 313 |
+
def forward(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode: str = 'instruct'):
|
| 314 |
+
if mode == 'instruct':
|
| 315 |
+
return self.forward_instruct(tokens, start_pos, mode)
|
| 316 |
+
elif mode == 'caption':
|
| 317 |
+
return self.forward_caption(tokens, start_pos, visual_tokens, mode)
|
| 318 |
+
|
| 319 |
+
def forward_instruct(self, tokens: torch.Tensor, start_pos: int, mode=None):
|
| 320 |
+
_bsz, seqlen = tokens.shape
|
| 321 |
+
h = self.tok_embeddings(tokens)
|
| 322 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
| 323 |
+
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
|
| 324 |
+
adapter = self.adapter_query.weight.reshape(self.params.adapter_layer, self.params.adapter_len, self.params.dim).unsqueeze(1)
|
| 325 |
+
mask = None
|
| 326 |
+
if seqlen > 1:
|
| 327 |
+
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
|
| 328 |
+
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
| 329 |
+
|
| 330 |
+
for layer in self.layers[: -1 * self.params.adapter_layer]:
|
| 331 |
+
h = layer(h, start_pos, freqs_cis, mask)
|
| 332 |
+
layer_index = 0
|
| 333 |
+
for layer in self.layers[-1 * self.params.adapter_layer:]:
|
| 334 |
+
h = layer(h, start_pos, freqs_cis, mask, adapter[layer_index], mode=mode)
|
| 335 |
+
layer_index = layer_index + 1
|
| 336 |
+
h = self.norm(h)
|
| 337 |
+
output = self.output(h[:, -1, :]) # only compute last logits
|
| 338 |
+
return output.float()
|
| 339 |
+
|
| 340 |
+
def forward_caption(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode=None):
|
| 341 |
+
_bsz, seqlen = tokens.shape
|
| 342 |
+
h = self.tok_embeddings(tokens)
|
| 343 |
+
self.freqs_cis = self.freqs_cis.to(h.device)
|
| 344 |
+
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
|
| 345 |
+
adapter = self.cap_adapter_query.weight.reshape(self.params.cap_adapter_layer, self.params.cap_adapter_len, self.params.dim).unsqueeze(1)
|
| 346 |
+
mask = None
|
| 347 |
+
if seqlen > 1:
|
| 348 |
+
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
|
| 349 |
+
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
| 350 |
+
|
| 351 |
+
for layer in self.layers[: -1 * self.params.cap_adapter_layer]:
|
| 352 |
+
h = layer(h, start_pos, freqs_cis, mask)
|
| 353 |
+
layer_index = 0
|
| 354 |
+
for layer in self.layers[-1 * self.params.cap_adapter_layer:]:
|
| 355 |
+
adapter_per_layer = adapter[layer_index]
|
| 356 |
+
if visual_tokens is not None:
|
| 357 |
+
adapter_per_layer = adapter_per_layer + visual_tokens
|
| 358 |
+
h = layer(h, start_pos, freqs_cis, mask, adapter_per_layer, mode=mode)
|
| 359 |
+
layer_index = layer_index + 1
|
| 360 |
+
h = self.norm(h)
|
| 361 |
+
output = self.output(h[:, -1, :]) # only compute last logits
|
| 362 |
+
return output.float()
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class VisionModel(nn.Module):
|
| 367 |
+
def __init__(self, params: ModelArgs):
|
| 368 |
+
super().__init__()
|
| 369 |
+
|
| 370 |
+
self.params = params
|
| 371 |
+
|
| 372 |
+
self.clip, self.clip_transform = clip.load(params.cap_vision_model)
|
| 373 |
+
self.clip.float()
|
| 374 |
+
for param in self.clip.parameters():
|
| 375 |
+
param.requires_grad = False
|
| 376 |
+
|
| 377 |
+
self.clip_proj = nn.Linear(self.clip.visual.output_dim, params.cap_vision_dim)
|
| 378 |
+
self.clip_proj_norm = nn.LayerNorm(params.cap_vision_dim)
|
| 379 |
+
|
| 380 |
+
self.visual_query = nn.Embedding(params.cap_adapter_len, params.cap_vision_dim)
|
| 381 |
+
|
| 382 |
+
self.visual_blocks = nn.ModuleList([
|
| 383 |
+
Block(params.cap_vision_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
|
| 384 |
+
for i in range(params.cap_vision_block)])
|
| 385 |
+
|
| 386 |
+
self.visual_proj = nn.Linear(params.cap_vision_dim, params.dim)
|
| 387 |
+
self.visual_proj_norm = nn.LayerNorm(params.dim)
|
| 388 |
+
|
| 389 |
+
def clip_encode_image(self, x):
|
| 390 |
+
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
|
| 391 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 392 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 393 |
+
x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
| 394 |
+
x = x + self.clip.visual.positional_embedding.to(x.dtype)
|
| 395 |
+
x = self.clip.visual.ln_pre(x)
|
| 396 |
+
|
| 397 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 398 |
+
x = self.clip.visual.transformer(x)
|
| 399 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 400 |
+
|
| 401 |
+
x = self.clip.visual.ln_post(x[:, :, :])
|
| 402 |
+
|
| 403 |
+
if self.clip.visual.proj is not None:
|
| 404 |
+
x = x @ self.clip.visual.proj
|
| 405 |
+
|
| 406 |
+
return x
|
| 407 |
+
|
| 408 |
+
def forward(self, imgs):
|
| 409 |
+
x = [self.clip_transform(img) for img in imgs]
|
| 410 |
+
x = torch.stack(x, dim=0).to(self.visual_query.weight.device)
|
| 411 |
+
_bsz = x.shape[0]
|
| 412 |
+
|
| 413 |
+
visual_feats = self.clip_encode_image(x).half()
|
| 414 |
+
visual_feats = self.clip_proj_norm(self.clip_proj(visual_feats))
|
| 415 |
+
visual_query = self.visual_query.weight.unsqueeze(0).repeat(_bsz, 1, 1)
|
| 416 |
+
visual_query = torch.cat([visual_query, visual_feats], dim=1)
|
| 417 |
+
for block in self.visual_blocks:
|
| 418 |
+
visual_query = block(visual_query)
|
| 419 |
+
visual_query = visual_query[:, :self.params.cap_adapter_len, :]
|
| 420 |
+
visual_query = self.visual_proj(visual_query)
|
| 421 |
+
visual_query = self.visual_proj_norm(visual_query)
|
| 422 |
+
|
| 423 |
+
return visual_query
|
llama/tokenizer.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
| 3 |
+
|
| 4 |
+
from sentencepiece import SentencePieceProcessor
|
| 5 |
+
from logging import getLogger
|
| 6 |
+
from typing import List
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
logger = getLogger()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Tokenizer:
|
| 14 |
+
def __init__(self, model_path: str):
|
| 15 |
+
# reload tokenizer
|
| 16 |
+
assert os.path.isfile(model_path), model_path
|
| 17 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
| 18 |
+
logger.info(f"Reloaded SentencePiece model from {model_path}")
|
| 19 |
+
|
| 20 |
+
# BOS / EOS token IDs
|
| 21 |
+
self.n_words: int = self.sp_model.vocab_size()
|
| 22 |
+
self.bos_id: int = self.sp_model.bos_id()
|
| 23 |
+
self.eos_id: int = self.sp_model.eos_id()
|
| 24 |
+
self.pad_id: int = self.sp_model.pad_id()
|
| 25 |
+
logger.info(
|
| 26 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
| 27 |
+
)
|
| 28 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
| 29 |
+
|
| 30 |
+
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
|
| 31 |
+
assert type(s) is str
|
| 32 |
+
t = self.sp_model.encode(s)
|
| 33 |
+
if bos:
|
| 34 |
+
t = [self.bos_id] + t
|
| 35 |
+
if eos:
|
| 36 |
+
t = t + [self.eos_id]
|
| 37 |
+
return t
|
| 38 |
+
|
| 39 |
+
def decode(self, t: List[int]) -> str:
|
| 40 |
+
return self.sp_model.decode(t)
|