File size: 6,611 Bytes
7d52396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import collections
import contextlib
import gc
import json
import shutil
import sys
from pathlib import Path

import torch

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from lit_llama.model import LLaMA, LLaMAConfig
from lit_llama.utils import EmptyInitOnDevice, lazy_load, incremental_save


@torch.no_grad()
def convert_hf_checkpoint(
    *,
    output_dir: Path = Path("checkpoints/lit-llama/7B"),
    checkpoint_dir: Path = Path("checkpoints/hf-llama/7B"),
    model_size: str = "7B",
    dtype: str = "float32",
    verify: bool = False,
) -> None:
    """
    Perform the reverse operation of: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
    """
    output_dir.mkdir(parents=True, exist_ok=True)

    # the tokenizer is the same for all model sizes, so we store it in the parent dir
    shutil.copy(checkpoint_dir / "tokenizer.model", output_dir.parent)

    dt = getattr(torch, dtype, None)
    if not isinstance(dt, torch.dtype):
        raise ValueError(f"{dtype} is not a valid dtype.")
    dtype = dt

    print("Initializing lit-llama")
    config = LLaMAConfig.from_name(model_size)

    with EmptyInitOnDevice(device="meta", dtype=dtype):
        model = LLaMA(config)

    qkv_size = model.transformer.h[0].attn.c_attn.weight.shape[0] // 3

    # initialize a new empty state dict to hold our new weights
    sd_meta = model.state_dict()
    sd = {}

    # Load the json file containing weight mapping
    pytorch_bin_map_json_path = checkpoint_dir / "pytorch_model.bin.index.json"
    with open(pytorch_bin_map_json_path) as json_map:
        bin_index = json.load(json_map)
    bin_files = set(checkpoint_dir / bin for bin in bin_index["weight_map"].values())
    if not bin_files:
        raise ValueError(f"Expected {str(checkpoint_dir)!r} to contain .bin files")

    def permute(w):
        dim = config.n_embd
        w = w._load_tensor().to(dtype)
        return (
            w.view(config.n_head, 2, dim // config.n_head // 2, dim)
            .transpose(1, 2)
            .reshape(dim, dim)
        )

    weight_map = {
        "self_attn.o_proj.weight": "attn.c_proj.weight",
        "self_attn.q_proj.weight": "attn.c_attn.weight",
        "self_attn.k_proj.weight": "attn.c_attn.weight",
        "self_attn.v_proj.weight": "attn.c_attn.weight",
        "mlp.gate_proj.weight": "mlp.c_fc1.weight",
        "mlp.up_proj.weight": "mlp.c_fc2.weight",
        "mlp.down_proj.weight": "mlp.c_proj.weight",
        "input_layernorm.weight": "rms_1.scale",
        "post_attention_layernorm.weight": "rms_2.scale",
        "model.embed_tokens.weight": "transformer.wte.weight",
        "model.norm.weight": "transformer.ln_f.scale",
        "lm_head.weight": "lm_head.weight",
    }

    print(f"Saving to disk at {output_dir}")
    unprocessed_weights = collections.defaultdict(dict)

    with incremental_save(output_dir / "lit-llama.pth") as saver:
        # for checkpoints that split the QKV across several files, we need to keep all the bin files
        # open, so we use `ExitStack` to close them all together at the end
        with contextlib.ExitStack() as stack:
            for bin_file in bin_files:
                print("Processing", bin_file)
                hf_weights = stack.enter_context(lazy_load(bin_file))
                for name, param in hf_weights.items():
                    skip = False
                    if "rotary_emb.inv_freq" in name:
                        continue
                    if "model.layers" in name:
                        block_id = int(name.split(".")[2])
                        from_name = ".".join(name.split(".")[3:])
                        to_name = weight_map[from_name]
                        sd_key = f"transformer.h.{block_id}.{to_name}"

                        if "q_proj" in name:
                            unprocessed_weights[sd_key]["q_proj"] = param
                            skip = True
                        elif "k_proj" in name:
                            unprocessed_weights[sd_key]["k_proj"] = param
                            skip = True
                        elif "v_proj" in name:
                            unprocessed_weights[sd_key]["v_proj"] = param
                            skip = True
                        if skip and len(unprocessed_weights[sd_key]) == 3:
                            w = torch.empty(
                                sd_meta[sd_key].shape, dtype=sd_meta[sd_key].dtype
                            )
                            w[:qkv_size] = permute(unprocessed_weights[sd_key]["q_proj"])
                            w[qkv_size:-qkv_size] = permute(
                                unprocessed_weights[sd_key]["k_proj"]
                            )
                            w[-qkv_size:] = (
                                unprocessed_weights[sd_key]["v_proj"]
                                ._load_tensor()
                                .to(dtype)
                            )
                            sd[sd_key] = w
                            del unprocessed_weights[sd_key]
                            skip = False
                        else:
                            sd[sd_key] = param._load_tensor().to(dtype)
                    else:
                        sd_key = weight_map[name]
                        sd[sd_key] = param._load_tensor().to(dtype)
                    if not skip:
                        sd[sd_key] = saver.store_early(sd[sd_key])
                gc.collect()
        saver.save(sd)

    assert len(unprocessed_weights) == 0, f"unexpected partial weights {list(unprocessed_weights)}"
    if verify:
        try:
            from transformers import LlamaForCausalLM
        except ImportError:
            raise ImportError("verify=True requires transformers to be installed, please `pip install transformers`")
        print("Verifying...")

        token_sample = torch.randint(0, config.vocab_size, size=(1, config.block_size), dtype=torch.int64)
        out = model(token_sample)
        del model
        gc.collect()

        print("Loading original model for comparison")
        model_hf = LlamaForCausalLM.from_pretrained(checkpoint_dir)
        out_hf = model_hf(token_sample)["logits"]

        print("Comparing outputs")
        assert out.device.type == out_hf.device.type
        assert out.dtype == out_hf.dtype
        assert torch.testing.assert_close(out, out_hf)


if __name__ == "__main__":
    from jsonargparse import CLI

    CLI(convert_hf_checkpoint)