import streamlit as st from transformers import pipeline # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): story_generator = pipeline("text-generation", model="aspis/gpt2-genre-story-generation") story_text = story_generator(text, max_length=150, num_return_sequences=1) return story_text[0]["generated_text"] # text2audio def text2audio(story_text): tts_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") audio_data = tts_model(story_text) return audio_data # Main part def main(): st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") if "scenario" not in st.session_state: st.session_state.scenario = None if "story" not in st.session_state: st.session_state.story = None if "audio_data" not in st.session_state: st.session_state.audio_data = None uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None and st.session_state.scenario is None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) # Stage 1: Image to Text st.text('Processing img2text...') st.session_state.scenario = img2text(uploaded_file.name) st.write(st.session_state.scenario) # Stage 2: Text to Story st.text('Generating a story...') st.session_state.story = text2story(st.session_state.scenario) st.write(st.session_state.story) # Stage 3: Story to Audio Data st.text('Generating audio data...') st.session_state.audio_data = text2audio(st.session_state.story) elif st.session_state.scenario: st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) st.write("Image Caption: ", st.session_state.scenario) st.write("Generated Story: ", st.session_state.story) # Play button (No reprocessing) if st.session_state.audio_data and st.button("Play Audio"): st.audio(st.session_state.audio_data['audio'], format="audio/wav", start_time=0, sample_rate=st.session_state.audio_data['sampling_rate']) if __name__ == "__main__": main()