File size: 5,619 Bytes
a6e02b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3b3cc0
 
a6e02b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3b3cc0
 
e86991c
a6e02b7
b3b3cc0
a6e02b7
 
 
b3b3cc0
 
a6e02b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import streamlit as st
import whisper
from pytube import YouTube
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import JSONFormatter
from urllib.parse import urlparse, parse_qs
from moviepy.editor import *
from moviepy.video.tools.subtitles import SubtitlesClip
import glob
from translatepy import Translator
import os
import pandas as pd
from TTS.api import TTS
import wave

@st.cache_resource
def load_whisper_model():
    model = whisper.load_model("base")
    return model

@st.cache_resource
def load_audio_model():
    device = "cpu"
    tts = TTS(model_name="tts_models/fr/mai/tacotron2-DDC").to(device)
    return tts

def download_video(vid_link):
    # download video in mp4
    yt = YouTube(vid_link)
    video_stream = yt.streams.filter(
        progressive=True, file_extension="mp4"
    ).first()
    filename = yt.title + ".mp4"
    video_stream.download("", yt.title + ".mp4")
    
    isEngCaptions = False

    # download english captions
    query_params = parse_qs(urlparse(vid_link).query)
    vid_id = query_params["v"][0]
    try:
        captions = YouTubeTranscriptApi.get_transcript(vid_id, languages=["en"])
    except:
        return filename, isEngCaptions, "No English captions found for this video, choose another one!"
    isEngCaptions = True
    formatter = JSONFormatter()
    formatted_captions = formatter.format_transcript(captions)

    return filename, isEngCaptions, formatted_captions

def vid_audio_to_text(vid, model):
    # separate audio from video in mp4 format
    videoclip = VideoFileClip(vid)
    audioclip = videoclip.audio
    file_name = vid.replace(".mp4", ".mp3")
    audioclip.write_audiofile(file_name)
    
    # convert audio clip to text
    result = model.transcribe(file_name)
    text = result["text"]
    segments = result["segments"]
    segments_df = pd.DataFrame(segments, columns=['start', 'end', 'text'])
    
    segments_df.columns = ['Timestamp', 'End_Timestamp', 'Original Text']
    
    return file_name, text, segments_df

def translate(text, language="French"):
    translator = Translator()
    translated = translator.translate(text, language)

    return translated.result

def convert_french_to_audio(original_text, tts_model, output_path=""):
    tts_model.tts_to_file(original_text, file_path=output_path)
    # return tts_model.tts(original_text)
        
def delete_temp_file(fpath):
    if os.path.exists(fpath):
        os.remove(fpath)
        
def change_audio_speed(audio_fname, scale_factor):
    oa = wave.open(audio_fname, 'rb')
    rate = oa.getframerate()
    signal = oa.readframes(-1)
    
    new_fname = audio_fname.replace('.wav', '_speed.wav')
    new_aud = wave.open(new_fname, 'wb')
    new_aud.setnchannels(1)
    new_aud.setsampwidth(2)
    new_aud.setframerate(rate * scale_factor)
    new_aud.writeframes(signal)
    new_aud.close()
    
    return new_fname
        
def add_subtitles_and_translation_to_movie(subs_df, translated, vid_fname):
    segs = subs_df.values.tolist()
    subs = []
    for start, end, text in segs:
        subs.append(((start, end), text))
        
    video = VideoFileClip(vid_fname)
    generator = lambda txt: TextClip(txt, font='Arial', fontsize=16, color='white', method='caption', align='south', size=video.size)
        
    subtitles = SubtitlesClip(subs, generator)
    audio_fr_name = vid_fname.replace('.mp4', '_subs.wav')
    convert_french_to_audio(translated, tts, audio_fr_name)
    
    audio_fr = AudioFileClip(audio_fr_name)
    new_audio_fr = change_audio_speed(audio_fr_name, audio_fr.duration/video.duration)
    audio_fr = AudioFileClip(new_audio_fr)
    
    video_fr = video.set_audio(audio_fr)
    
    result = CompositeVideoClip([video_fr, subtitles.set_pos(('center','bottom'))])
    sub_vid_fname = vid_fname.replace(".mp4", "_subs.mp4")
    result.write_videofile(sub_vid_fname, fps=video_fr.fps)
    return sub_vid_fname, audio_fr_name, new_audio_fr

st.title("Translate YouTube subtitles from English to French")

form = st.form(key='my_form')
vid_link = form.text_input("Select a YouTube Video with English Captions", placeholder="Enter full URL")
submitted = submit_button = form.form_submit_button(label='Submit')
    
if submitted:
    vid_fname, isEngCaptions, captions = download_video(vid_link)
    if not isEngCaptions:
        st.write(captions)
    else:
        model = load_whisper_model()
        tts = load_audio_model()

        st.write("Processing video... This might take more than 10 minutes.")
        st.write(vid_fname)
        audio_fname, audio_text, segments_df = vid_audio_to_text(vid_fname, model)
        st.write("Processing audio...")
        # subtitles with timestamp
        segments_df['Translated Text'] = segments_df['Original Text'].apply((lambda x: translate(x)))
        translated_audio_text = translate(audio_text)

        st.write("Adding subtitles and translated audio...")
        sub_vid_fname, audio_fr_name, new_audio_fr = add_subtitles_and_translation_to_movie(segments_df[['Timestamp', 'End_Timestamp', 'Translated Text']], translated_audio_text, vid_fname)
        
        st.video(sub_vid_fname)
        
        segments_df['Timestamp'] = segments_df['Timestamp'].map(lambda x: '{:02}:{:02}:{:02.2f}'.format(int(x//3600), int(x%3600//60), x%60))
        del segments_df['End_Timestamp']
        
        st.table(segments_df.set_index(segments_df.columns[0]))
        
    delete_temp_file(vid_fname)
    delete_temp_file(audio_fname)
    delete_temp_file(sub_vid_fname)
    delete_temp_file(audio_fr_name)
    delete_temp_file(new_audio_fr)