Spaces:
Running
Running
# pendulum.tcl -- | |
# | |
# This demonstration illustrates how Tcl/Tk can be used to construct | |
# simulations of physical systems. | |
if {![info exists widgetDemo]} { | |
error "This script should be run from the \"widget\" demo." | |
} | |
package require Tk | |
set w .pendulum | |
catch {destroy $w} | |
toplevel $w | |
wm title $w "Pendulum Animation Demonstration" | |
wm iconname $w "pendulum" | |
positionWindow $w | |
label $w.msg -font $font -wraplength 4i -justify left -text "This demonstration shows how Tcl/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas." | |
pack $w.msg | |
## See Code / Dismiss buttons | |
set btns [addSeeDismiss $w.buttons $w] | |
pack $btns -side bottom -fill x | |
# Create some structural widgets | |
pack [panedwindow $w.p] -fill both -expand 1 | |
$w.p add [labelframe $w.p.l1 -text "Pendulum Simulation"] | |
$w.p add [labelframe $w.p.l2 -text "Phase Space"] | |
# Create the canvas containing the graphical representation of the | |
# simulated system. | |
canvas $w.c -width 320 -height 200 -background white -bd 2 -relief sunken | |
$w.c create text 5 5 -anchor nw -text "Click to Adjust Bob Start Position" | |
# Coordinates of these items don't matter; they will be set properly below | |
$w.c create line 0 25 320 25 -tags plate -fill grey50 -width 2 | |
$w.c create oval 155 20 165 30 -tags pivot -fill grey50 -outline {} | |
$w.c create line 1 1 1 1 -tags rod -fill black -width 3 | |
$w.c create oval 1 1 2 2 -tags bob -fill yellow -outline black | |
pack $w.c -in $w.p.l1 -fill both -expand true | |
# Create the canvas containing the phase space graph; this consists of | |
# a line that gets gradually paler as it ages, which is an extremely | |
# effective visual trick. | |
canvas $w.k -width 320 -height 200 -background white -bd 2 -relief sunken | |
$w.k create line 160 200 160 0 -fill grey75 -arrow last -tags y_axis | |
$w.k create line 0 100 320 100 -fill grey75 -arrow last -tags x_axis | |
for {set i 90} {$i>=0} {incr i -10} { | |
# Coordinates of these items don't matter; they will be set properly below | |
$w.k create line 0 0 1 1 -smooth true -tags graph$i -fill grey$i | |
} | |
$w.k create text 0 0 -anchor ne -text "\u03b8" -tags label_theta | |
$w.k create text 0 0 -anchor ne -text "\u03b4\u03b8" -tags label_dtheta | |
pack $w.k -in $w.p.l2 -fill both -expand true | |
# Initialize some variables | |
set points {} | |
set Theta 45.0 | |
set dTheta 0.0 | |
set pi 3.1415926535897933 | |
set length 150 | |
set home 160 | |
# This procedure makes the pendulum appear at the correct place on the | |
# canvas. If the additional arguments "at $x $y" are passed (the 'at' | |
# is really just syntactic sugar) instead of computing the position of | |
# the pendulum from the length of the pendulum rod and its angle, the | |
# length and angle are computed in reverse from the given location | |
# (which is taken to be the centre of the pendulum bob.) | |
proc showPendulum {canvas {at {}} {x {}} {y {}}} { | |
global Theta dTheta pi length home | |
if {$at eq "at" && ($x!=$home || $y!=25)} { | |
set dTheta 0.0 | |
set x2 [expr {$x - $home}] | |
set y2 [expr {$y - 25}] | |
set length [expr {hypot($x2, $y2)}] | |
set Theta [expr {atan2($x2, $y2) * 180/$pi}] | |
} else { | |
set angle [expr {$Theta * $pi/180}] | |
set x [expr {$home + $length*sin($angle)}] | |
set y [expr {25 + $length*cos($angle)}] | |
} | |
$canvas coords rod $home 25 $x $y | |
$canvas coords bob \ | |
[expr {$x-15}] [expr {$y-15}] [expr {$x+15}] [expr {$y+15}] | |
} | |
showPendulum $w.c | |
# Update the phase-space graph according to the current angle and the | |
# rate at which the angle is changing (the first derivative with | |
# respect to time.) | |
proc showPhase {canvas} { | |
global Theta dTheta points psw psh | |
lappend points [expr {$Theta+$psw}] [expr {-20*$dTheta+$psh}] | |
if {[llength $points] > 100} { | |
set points [lrange $points end-99 end] | |
} | |
for {set i 0} {$i<100} {incr i 10} { | |
set list [lrange $points end-[expr {$i-1}] end-[expr {$i-12}]] | |
if {[llength $list] >= 4} { | |
$canvas coords graph$i $list | |
} | |
} | |
} | |
# Set up some bindings on the canvases. Note that when the user | |
# clicks we stop the animation until they release the mouse | |
# button. Also note that both canvases are sensitive to <Configure> | |
# events, which allows them to find out when they have been resized by | |
# the user. | |
bind $w.c <Destroy> { | |
after cancel $animationCallbacks(pendulum) | |
unset animationCallbacks(pendulum) | |
} | |
bind $w.c <Button-1> { | |
after cancel $animationCallbacks(pendulum) | |
showPendulum %W at %x %y | |
} | |
bind $w.c <B1-Motion> { | |
showPendulum %W at %x %y | |
} | |
bind $w.c <ButtonRelease-1> { | |
showPendulum %W at %x %y | |
set animationCallbacks(pendulum) [after 15 repeat [winfo toplevel %W]] | |
} | |
bind $w.c <Configure> { | |
%W coords plate 0 25 %w 25 | |
set home [expr {%w/2}] | |
%W coords pivot [expr {$home-5}] 20 [expr {$home+5}] 30 | |
} | |
bind $w.k <Configure> { | |
set psh [expr {%h/2}] | |
set psw [expr {%w/2}] | |
%W coords x_axis 2 $psh [expr {%w-2}] $psh | |
%W coords y_axis $psw [expr {%h-2}] $psw 2 | |
%W coords label_dtheta [expr {$psw-4}] 6 | |
%W coords label_theta [expr {%w-6}] [expr {$psh+4}] | |
} | |
# This procedure is the "business" part of the simulation that does | |
# simple numerical integration of the formula for a simple rotational | |
# pendulum. | |
proc recomputeAngle {} { | |
global Theta dTheta pi length | |
set scaling [expr {3000.0/$length/$length}] | |
# To estimate the integration accurately, we really need to | |
# compute the end-point of our time-step. But to do *that*, we | |
# need to estimate the integration accurately! So we try this | |
# technique, which is inaccurate, but better than doing it in a | |
# single step. What we really want is bound up in the | |
# differential equation: | |
# .. - sin theta | |
# theta + theta = ----------- | |
# length | |
# But my math skills are not good enough to solve this! | |
# first estimate | |
set firstDDTheta [expr {-sin($Theta * $pi/180)*$scaling}] | |
set midDTheta [expr {$dTheta + $firstDDTheta}] | |
set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}] | |
# second estimate | |
set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}] | |
set midDTheta [expr {$dTheta + ($firstDDTheta + $midDDTheta)/2}] | |
set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}] | |
# Now we do a double-estimate approach for getting the final value | |
# first estimate | |
set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}] | |
set lastDTheta [expr {$midDTheta + $midDDTheta}] | |
set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}] | |
# second estimate | |
set lastDDTheta [expr {-sin($lastTheta * $pi/180)*$scaling}] | |
set lastDTheta [expr {$midDTheta + ($midDDTheta + $lastDDTheta)/2}] | |
set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}] | |
# Now put the values back in our globals | |
set dTheta $lastDTheta | |
set Theta $lastTheta | |
} | |
# This method ties together the simulation engine and the graphical | |
# display code that visualizes it. | |
proc repeat w { | |
global animationCallbacks | |
# Simulate | |
recomputeAngle | |
# Update the display | |
showPendulum $w.c | |
showPhase $w.k | |
# Reschedule ourselves | |
set animationCallbacks(pendulum) [after 15 [list repeat $w]] | |
} | |
# Start the simulation after a short pause | |
set animationCallbacks(pendulum) [after 500 [list repeat $w]] | |