Spaces:
Running
Running
#!/usr/bin/env python3 | |
""" turtle-example-suite: | |
tdemo_fractalCurves.py | |
This program draws two fractal-curve-designs: | |
(1) A hilbert curve (in a box) | |
(2) A combination of Koch-curves. | |
The CurvesTurtle class and the fractal-curve- | |
methods are taken from the PythonCard example | |
scripts for turtle-graphics. | |
""" | |
from turtle import * | |
from time import sleep, perf_counter as clock | |
class CurvesTurtle(Pen): | |
# example derived from | |
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics | |
# by Harold Abelson and Andrea diSessa | |
# p. 96-98 | |
def hilbert(self, size, level, parity): | |
if level == 0: | |
return | |
# rotate and draw first subcurve with opposite parity to big curve | |
self.left(parity * 90) | |
self.hilbert(size, level - 1, -parity) | |
# interface to and draw second subcurve with same parity as big curve | |
self.forward(size) | |
self.right(parity * 90) | |
self.hilbert(size, level - 1, parity) | |
# third subcurve | |
self.forward(size) | |
self.hilbert(size, level - 1, parity) | |
# fourth subcurve | |
self.right(parity * 90) | |
self.forward(size) | |
self.hilbert(size, level - 1, -parity) | |
# a final turn is needed to make the turtle | |
# end up facing outward from the large square | |
self.left(parity * 90) | |
# Visual Modeling with Logo: A Structural Approach to Seeing | |
# by James Clayson | |
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904 | |
# p. 146 | |
def fractalgon(self, n, rad, lev, dir): | |
import math | |
# if dir = 1 turn outward | |
# if dir = -1 turn inward | |
edge = 2 * rad * math.sin(math.pi / n) | |
self.pu() | |
self.fd(rad) | |
self.pd() | |
self.rt(180 - (90 * (n - 2) / n)) | |
for i in range(n): | |
self.fractal(edge, lev, dir) | |
self.rt(360 / n) | |
self.lt(180 - (90 * (n - 2) / n)) | |
self.pu() | |
self.bk(rad) | |
self.pd() | |
# p. 146 | |
def fractal(self, dist, depth, dir): | |
if depth < 1: | |
self.fd(dist) | |
return | |
self.fractal(dist / 3, depth - 1, dir) | |
self.lt(60 * dir) | |
self.fractal(dist / 3, depth - 1, dir) | |
self.rt(120 * dir) | |
self.fractal(dist / 3, depth - 1, dir) | |
self.lt(60 * dir) | |
self.fractal(dist / 3, depth - 1, dir) | |
def main(): | |
ft = CurvesTurtle() | |
ft.reset() | |
ft.speed(0) | |
ft.ht() | |
ft.getscreen().tracer(1,0) | |
ft.pu() | |
size = 6 | |
ft.setpos(-33*size, -32*size) | |
ft.pd() | |
ta=clock() | |
ft.fillcolor("red") | |
ft.begin_fill() | |
ft.fd(size) | |
ft.hilbert(size, 6, 1) | |
# frame | |
ft.fd(size) | |
for i in range(3): | |
ft.lt(90) | |
ft.fd(size*(64+i%2)) | |
ft.pu() | |
for i in range(2): | |
ft.fd(size) | |
ft.rt(90) | |
ft.pd() | |
for i in range(4): | |
ft.fd(size*(66+i%2)) | |
ft.rt(90) | |
ft.end_fill() | |
tb=clock() | |
res = "Hilbert: %.2fsec. " % (tb-ta) | |
sleep(3) | |
ft.reset() | |
ft.speed(0) | |
ft.ht() | |
ft.getscreen().tracer(1,0) | |
ta=clock() | |
ft.color("black", "blue") | |
ft.begin_fill() | |
ft.fractalgon(3, 250, 4, 1) | |
ft.end_fill() | |
ft.begin_fill() | |
ft.color("red") | |
ft.fractalgon(3, 200, 4, -1) | |
ft.end_fill() | |
tb=clock() | |
res += "Koch: %.2fsec." % (tb-ta) | |
return res | |
if __name__ == '__main__': | |
msg = main() | |
print(msg) | |
mainloop() | |