Spaces:
Running
Running
import time | |
from abc import abstractmethod | |
from typing import List, Tuple | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from transformers import CLIPImageProcessor, CLIPVisionModel | |
from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline | |
from modules import shared | |
from modules.logging_colors import logger | |
from modules.text_generation import encode | |
def expand2square(pil_img: Image.Image, background_color: Tuple[int]) -> Image.Image: | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
class LLaVA_v0_Pipeline(AbstractMultimodalPipeline): | |
CLIP_REPO = "openai/clip-vit-large-patch14" | |
def __init__(self, params: dict) -> None: | |
super().__init__() | |
self.clip_device = self._get_device("vision_device", params) | |
self.clip_dtype = self._get_dtype("vision_bits", params) | |
self.projector_device = self._get_device("projector_device", params) | |
self.projector_dtype = self._get_dtype("projector_bits", params) | |
self.image_processor, self.vision_tower, self.mm_projector = self._load_models() | |
def _load_models(self): | |
start_ts = time.time() | |
logger.info(f"LLaVA - Loading CLIP from {self.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...") | |
image_processor = CLIPImageProcessor.from_pretrained(self.CLIP_REPO, torch_dtype=self.clip_dtype) | |
vision_tower = CLIPVisionModel.from_pretrained(self.CLIP_REPO, torch_dtype=self.clip_dtype).to(self.clip_device) | |
logger.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...") | |
projector_path = hf_hub_download(self.llava_projector_repo(), self.llava_projector_filename()) | |
mm_projector = self.build_mm_projector() | |
projector_data = torch.load(projector_path) | |
projector_data = {k[19:]: v for k, v in projector_data.items() if k.startswith('model.mm_projector.')} | |
mm_projector.load_state_dict(projector_data) | |
mm_projector = mm_projector.to(self.projector_device) | |
logger.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds") | |
return image_processor, vision_tower, mm_projector | |
def build_mm_projector(self) -> torch.nn.Module: | |
projector_shape = self.llava_projector_shape() | |
if len(projector_shape) == 2: | |
return torch.nn.Linear(*projector_shape) | |
else: | |
modules = [] | |
modules.append(torch.nn.Linear(projector_shape[0], projector_shape[1])) | |
for i in range(2, len(projector_shape)): | |
modules.append(torch.nn.GELU()) | |
modules.append(torch.nn.Linear(projector_shape[i-1], projector_shape[i])) | |
return torch.nn.Sequential(*modules) | |
def image_start() -> str: | |
return "<im_start>" | |
def image_end() -> str: | |
return "<im_end>" | |
def num_image_embeds() -> int: | |
return 256 | |
def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor: | |
for attr in ['', 'model', 'model.model', 'model.model.model']: | |
tmp = getattr(shared.model, attr, None) if attr != '' else shared.model | |
if tmp is not None and hasattr(tmp, 'embed_tokens'): | |
func = tmp.embed_tokens | |
break | |
else: | |
raise ValueError('The embed_tokens method has not been found for this loader.') | |
return func(input_ids).to(shared.model.device, dtype=shared.model.dtype) | |
def placeholder_embeddings() -> torch.Tensor: | |
return LLaVA_v0_Pipeline.embed_tokens(encode("<im_patch>"*256, add_bos_token=False)[0]) | |
def embed_images(self, images: List[Image.Image]) -> torch.Tensor: | |
images = self.image_processor(images, return_tensors='pt')['pixel_values'] | |
images = images.to(self.clip_device, dtype=self.clip_dtype) | |
with torch.no_grad(): | |
image_forward_outs = self.vision_tower(images, output_hidden_states=True) | |
select_hidden_state_layer = -2 | |
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] | |
image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype) | |
image_features = self.mm_projector(image_features) | |
return image_features.to(shared.model.device, dtype=shared.model.dtype) | |
def llava_projector_repo() -> str: | |
pass | |
def llava_projector_filename() -> str: | |
pass | |
def llava_projector_shape() -> Tuple[int, int]: | |
pass | |
class LLaVA_v0_13B_Pipeline(LLaVA_v0_Pipeline): | |
def __init__(self, params: dict) -> None: | |
super().__init__(params) | |
def name() -> str: | |
return "llava-13b" | |
def placeholder_token_id() -> int: | |
return 32000 | |
def llava_projector_shape() -> Tuple[int, int]: | |
return (1024, 5120) | |
def llava_projector_filename() -> str: | |
return "mm_projector.bin" | |
def llava_projector_repo() -> str: | |
return "liuhaotian/LLaVA-13b-delta-v0" | |
class LLaVA_v0_7B_Pipeline(LLaVA_v0_Pipeline): | |
def __init__(self, params: dict) -> None: | |
super().__init__(params) | |
def name() -> str: | |
return "llava-7b" | |
def placeholder_token_id() -> int: | |
return 32001 | |
def llava_projector_shape() -> Tuple[int, int]: | |
return (1024, 4096) | |
def llava_projector_filename() -> str: | |
return "mm_projector.bin" | |
def llava_projector_repo() -> str: | |
return "liuhaotian/LLaVA-7b-delta-v0" | |
class LLaVA_LLaMA_2_13B_Pipeline(LLaVA_v0_13B_Pipeline): | |
def __init__(self, params: dict) -> None: | |
super().__init__(params) | |
def name() -> str: | |
return "llava-llama-2-13b" | |
def placeholder_token_id() -> int: | |
return 0 | |
def llava_projector_repo() -> str: | |
return "liuhaotian/llava-llama-2-13b-chat-lightning-preview" | |
def image_start() -> str: | |
return "" | |
def image_end() -> str: | |
return "" | |
def placeholder_embeddings() -> torch.Tensor: | |
return LLaVA_v0_Pipeline.embed_tokens(encode("<unk>"*256, add_bos_token=False)[0]) | |
class LLaVA_v1_5_13B_Pipeline(LLaVA_v0_13B_Pipeline): | |
CLIP_REPO = "openai/clip-vit-large-patch14-336" | |
def __init__(self, params: dict) -> None: | |
super().__init__(params) | |
def name() -> str: | |
return "llava-v1.5-13b" | |
def llava_projector_shape() -> Tuple[int, int]: | |
return (1024, 5120, 5120) | |
def placeholder_token_id() -> int: | |
return 0 | |
def llava_projector_repo() -> str: | |
return "liuhaotian/llava-v1.5-13b" | |
def image_start() -> str: | |
return "" | |
def image_end() -> str: | |
return "" | |
def num_image_embeds() -> int: | |
return 576 | |
def embed_images(self, images: List[Image.Image]) -> torch.Tensor: | |
# pad it to square first | |
images = [ | |
expand2square(image, tuple(int(x*255) for x in self.image_processor.image_mean)) | |
for image in images | |
] | |
return super().embed_images(images) | |
def placeholder_embeddings() -> torch.Tensor: | |
return LLaVA_v0_Pipeline.embed_tokens(encode("<unk>"*576, add_bos_token=False)[0]) | |
class LLaVA_v1_5_7B_Pipeline(LLaVA_v1_5_13B_Pipeline): | |
def name() -> str: | |
return "llava-v1.5-7b" | |
def llava_projector_shape() -> Tuple[int, int]: | |
return (1024, 4096, 4096) | |
def llava_projector_repo() -> str: | |
return "liuhaotian/llava-v1.5-7b" |