import gradio as gr import os import cv2 import shutil import sys from subprocess import call import torch import numpy as np from skimage import color import torchvision.transforms as transforms from PIL import Image import torch import uuid import dlib uid = uuid.uuid4() #os.system("pip install dlib") os.system('bash setup.sh') def run_im(inp): outp=run(inp) return outp def lab2rgb(L, AB): """Convert an Lab tensor image to a RGB numpy output Parameters: L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) Returns: rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) """ AB2 = AB * 110.0 L2 = (L + 1.0) * 50.0 Lab = torch.cat([L2, AB2], dim=1) Lab = Lab[0].data.cpu().float().numpy() Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) rgb = color.lab2rgb(Lab) * 255 return rgb def get_transform(model_name,params=None, grayscale=False, method=Image.BICUBIC): #params preprocess = 'resize' load_size = 256 crop_size = 256 transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if model_name == "Pix2Pix Unet 256": osize = [load_size, load_size] transform_list.append(transforms.Resize(osize, method)) # if 'crop' in preprocess: # if params is None: # transform_list.append(transforms.RandomCrop(crop_size)) return transforms.Compose(transform_list) def inferRestoration(img, model_name): #if model_name == "Pix2Pix": model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixRestoration_unet256') transform_list = [ transforms.ToTensor(), transforms.Resize([256,256], Image.BICUBIC), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] transform = transforms.Compose(transform_list) img = transform(img) img = torch.unsqueeze(img, 0) result = model(img) result = result[0].detach() result = (result +1)/2.0 result = transforms.ToPILImage()(result) return result def inferColorization(img): model_name = "Deoldify" model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'DeOldifyColorization') transform_list = [ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ] transform = transforms.Compose(transform_list) #a = transforms.ToTensor()(a) img = img.convert('L') img = transform(img) img = torch.unsqueeze(img, 0) result = model(img) result = result[0].detach() result = (result +1)/2.0 #img = transforms.Grayscale(3)(img) #img = transforms.ToTensor()(img) #img = torch.unsqueeze(img, 0) #result = model(img) #result = torch.clip(result, min=0, max=1) image_pil = transforms.ToPILImage()(result) return image_pil transform_seq = get_transform(model_name) img = transform_seq(img) # if model_name == "Pix2Pix Unet 256": # img.resize((256,256)) img = np.array(img) lab = color.rgb2lab(img).astype(np.float32) lab_t = transforms.ToTensor()(lab) A = lab_t[[0], ...] / 50.0 - 1.0 B = lab_t[[1, 2], ...] / 110.0 #data = {'A': A, 'B': B, 'A_paths': "", 'B_paths': ""} L = torch.unsqueeze(A, 0) #print(L.shape) ab = model(L) Lab = lab2rgb(L, ab).astype(np.uint8) image_pil = Image.fromarray(Lab) #image_pil.save('test.png') #print(Lab.shape) return image_pil def colorizaition(image,model_name): image = Image.fromarray(image) result = inferColorization(image,model_name) return result def run_cmd(command): try: call(command, shell=True) except KeyboardInterrupt: print("Process interrupted") sys.exit(1) def run(image): if os.path.isdir("Temp"): shutil.rmtree("Temp") os.makedirs("Temp") os.makedirs("Temp/input") print(type(image)) cv2.imwrite("Temp/input/input_img.png", image) command = ("python run.py --input_folder " + "Temp/input" + " --output_folder " + "Temp" + " --GPU " + "-1" + " --with_scratch") run_cmd(command) result_restoration = Image.open("Temp/final_output/input_img.png") shutil.rmtree("Temp") result_colorization = inferColorization(result_restoration) return result_colorization def load_im(url): return url with gr.Blocks() as app: with gr.Row(): gr.Column() with gr.Column(): im = gr.Image(label="Input Image") im_btn=gr.Button(label="Restore") out_im = gr.Image(label="Restored Image") gr.Column() im_btn.click(run,im,out_im) app.queue(concurrency_count=100).launch(show_api=False)