Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -10,24 +10,15 @@ from skimage import color
|
|
10 |
import torchvision.transforms as transforms
|
11 |
from PIL import Image
|
12 |
import torch
|
13 |
-
import uuid
|
14 |
import dlib
|
15 |
-
uid = uuid.uuid4()
|
16 |
-
|
17 |
#os.system("pip install dlib")
|
18 |
os.system('bash setup.sh')
|
19 |
|
20 |
-
def run_im(inp):
|
21 |
-
outp=run(inp)
|
22 |
-
return outp
|
23 |
-
|
24 |
-
|
25 |
def lab2rgb(L, AB):
|
26 |
"""Convert an Lab tensor image to a RGB numpy output
|
27 |
Parameters:
|
28 |
L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
|
29 |
AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
|
30 |
-
|
31 |
Returns:
|
32 |
rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
|
33 |
"""
|
@@ -74,30 +65,35 @@ def inferRestoration(img, model_name):
|
|
74 |
result = transforms.ToPILImage()(result)
|
75 |
return result
|
76 |
|
77 |
-
def inferColorization(img):
|
78 |
-
model_name
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
transform_seq = get_transform(model_name)
|
103 |
img = transform_seq(img)
|
@@ -131,42 +127,35 @@ def run_cmd(command):
|
|
131 |
print("Process interrupted")
|
132 |
sys.exit(1)
|
133 |
|
134 |
-
def run(image):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
command = ("python run.py --input_folder "
|
145 |
-
+ "Temp/input"
|
146 |
-
+ " --output_folder "
|
147 |
-
+ "Temp"
|
148 |
-
+ " --GPU "
|
149 |
-
+ "-1"
|
150 |
-
+ " --with_scratch")
|
151 |
-
run_cmd(command)
|
152 |
-
print(f"Temp/final_output: {os.listdir(path='Temp/final_output')}")
|
153 |
-
print(f"Temp: {os.listdir(path='Temp')}")
|
154 |
-
print(f"Temp: {os.listdir(path='Temp/input')}")
|
155 |
-
print(f"Temp: {os.listdir(path='Temp/stage_1_restore_output')}")
|
156 |
-
print(f"Temp: {os.listdir(path='Temp/stage_2_detection_output')}")
|
157 |
-
print(f"Temp: {os.listdir(path='Temp/stage_3_face_output')}")
|
158 |
-
print(f"Temp: {os.listdir(path='Temp/final_output')}")
|
159 |
-
print(f"Save: {os.listdir(path='save')}")
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
|
|
|
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
166 |
|
167 |
return result_colorization
|
168 |
-
def load_im(url):
|
169 |
-
return url
|
170 |
|
171 |
|
172 |
with gr.Blocks() as app:
|
@@ -174,8 +163,12 @@ with gr.Blocks() as app:
|
|
174 |
gr.Column()
|
175 |
with gr.Column():
|
176 |
im = gr.Image(label="Input Image")
|
|
|
|
|
|
|
|
|
177 |
im_btn=gr.Button(label="Restore")
|
178 |
out_im = gr.Image(label="Restored Image")
|
179 |
gr.Column()
|
180 |
-
im_btn.click(run,im,out_im)
|
181 |
app.queue(concurrency_count=100).launch(show_api=False)
|
|
|
10 |
import torchvision.transforms as transforms
|
11 |
from PIL import Image
|
12 |
import torch
|
|
|
13 |
import dlib
|
|
|
|
|
14 |
#os.system("pip install dlib")
|
15 |
os.system('bash setup.sh')
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
def lab2rgb(L, AB):
|
18 |
"""Convert an Lab tensor image to a RGB numpy output
|
19 |
Parameters:
|
20 |
L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
|
21 |
AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
|
|
|
22 |
Returns:
|
23 |
rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
|
24 |
"""
|
|
|
65 |
result = transforms.ToPILImage()(result)
|
66 |
return result
|
67 |
|
68 |
+
def inferColorization(img,model_name):
|
69 |
+
#print(model_name)
|
70 |
+
if model_name == "Pix2Pix Resnet 9block":
|
71 |
+
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixColorization_resnet9b')
|
72 |
+
elif model_name == "Pix2Pix Unet 256":
|
73 |
+
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixColorization_unet256')
|
74 |
+
elif model_name == "Deoldify":
|
75 |
+
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'DeOldifyColorization')
|
76 |
+
transform_list = [
|
77 |
+
transforms.ToTensor(),
|
78 |
+
transforms.Normalize((0.5,), (0.5,))
|
79 |
+
]
|
80 |
+
transform = transforms.Compose(transform_list)
|
81 |
+
#a = transforms.ToTensor()(a)
|
82 |
+
img = img.convert('L')
|
83 |
+
img = transform(img)
|
84 |
+
img = torch.unsqueeze(img, 0)
|
85 |
+
result = model(img)
|
86 |
+
|
87 |
+
result = result[0].detach()
|
88 |
+
result = (result +1)/2.0
|
89 |
+
|
90 |
+
#img = transforms.Grayscale(3)(img)
|
91 |
+
#img = transforms.ToTensor()(img)
|
92 |
+
#img = torch.unsqueeze(img, 0)
|
93 |
+
#result = model(img)
|
94 |
+
#result = torch.clip(result, min=0, max=1)
|
95 |
+
image_pil = transforms.ToPILImage()(result)
|
96 |
+
return image_pil
|
97 |
|
98 |
transform_seq = get_transform(model_name)
|
99 |
img = transform_seq(img)
|
|
|
127 |
print("Process interrupted")
|
128 |
sys.exit(1)
|
129 |
|
130 |
+
def run(image,Restoration_mode, Colorizaition_mode):
|
131 |
+
if Restoration_mode == "BOPBTL":
|
132 |
+
if os.path.isdir("Temp"):
|
133 |
+
shutil.rmtree("Temp")
|
134 |
+
|
135 |
+
os.makedirs("Temp")
|
136 |
+
os.makedirs("Temp/input")
|
137 |
+
print(type(image))
|
138 |
+
cv2.imwrite("Temp/input/input_img.png", image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
command = ("python run.py --input_folder "
|
141 |
+
+ "Temp/input"
|
142 |
+
+ " --output_folder "
|
143 |
+
+ "Temp"
|
144 |
+
+ " --GPU "
|
145 |
+
+ "-1"
|
146 |
+
+ " --with_scratch")
|
147 |
+
run_cmd(command)
|
148 |
|
149 |
+
result_restoration = Image.open("Temp/final_output/input_img.png")
|
150 |
+
shutil.rmtree("Temp")
|
151 |
|
152 |
+
elif Restoration_mode == "Pix2Pix":
|
153 |
+
result_restoration = inferRestoration(image, Restoration_mode)
|
154 |
+
print("Restoration_mode",Restoration_mode)
|
155 |
+
|
156 |
+
result_colorization = inferColorization(result_restoration,Colorizaition_mode)
|
157 |
|
158 |
return result_colorization
|
|
|
|
|
159 |
|
160 |
|
161 |
with gr.Blocks() as app:
|
|
|
163 |
gr.Column()
|
164 |
with gr.Column():
|
165 |
im = gr.Image(label="Input Image")
|
166 |
+
with gr.Row():
|
167 |
+
rad1 = gr.Radio(["BOPBTL", "Pix2Pix"])
|
168 |
+
rad2 = gr.Radio(["Deoldify", "Pix2Pix Resnet 9block","Pix2Pix Unet 256"])
|
169 |
+
|
170 |
im_btn=gr.Button(label="Restore")
|
171 |
out_im = gr.Image(label="Restored Image")
|
172 |
gr.Column()
|
173 |
+
im_btn.click(run,[im,rad1,rad2],out_im)
|
174 |
app.queue(concurrency_count=100).launch(show_api=False)
|