Spaces:
Build error
Build error
File size: 4,964 Bytes
f7ebd0a b786aa7 8d1c14c 4b642e0 e679c2e 8d1c14c f7ebd0a 2084052 f7ebd0a a65f78b a53f406 a65f78b f7ebd0a e2d9df3 9ff5a4f f56e9e2 f7ebd0a f56e9e2 d3119cf a65f78b f56e9e2 a65f78b f56e9e2 a65f78b f56e9e2 a65f78b f7ebd0a f56e9e2 a65f78b e5867d0 f7ebd0a cd8ac5c 21fede7 cd8ac5c 085466f 62ca83d e2d9df3 085466f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import gradio as gr
import os
import cv2
import shutil
import sys
from subprocess import call
import torch
import numpy as np
from skimage import color
import torchvision.transforms as transforms
from PIL import Image
import torch
import uuid
import dlib
uid = uuid.uuid4()
#os.system("pip install dlib")
os.system('bash setup.sh')
def run_im(inp):
outp=run(inp)
return outp
def lab2rgb(L, AB):
"""Convert an Lab tensor image to a RGB numpy output
Parameters:
L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
Returns:
rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
"""
AB2 = AB * 110.0
L2 = (L + 1.0) * 50.0
Lab = torch.cat([L2, AB2], dim=1)
Lab = Lab[0].data.cpu().float().numpy()
Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
rgb = color.lab2rgb(Lab) * 255
return rgb
def get_transform(model_name,params=None, grayscale=False, method=Image.BICUBIC):
#params
preprocess = 'resize'
load_size = 256
crop_size = 256
transform_list = []
if grayscale:
transform_list.append(transforms.Grayscale(1))
if model_name == "Pix2Pix Unet 256":
osize = [load_size, load_size]
transform_list.append(transforms.Resize(osize, method))
# if 'crop' in preprocess:
# if params is None:
# transform_list.append(transforms.RandomCrop(crop_size))
return transforms.Compose(transform_list)
def inferRestoration(img, model_name):
#if model_name == "Pix2Pix":
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixRestoration_unet256')
transform_list = [
transforms.ToTensor(),
transforms.Resize([256,256], Image.BICUBIC),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
transform = transforms.Compose(transform_list)
img = transform(img)
img = torch.unsqueeze(img, 0)
result = model(img)
result = result[0].detach()
result = (result +1)/2.0
result = transforms.ToPILImage()(result)
return result
def inferColorization(img):
model_name = "Deoldify"
model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'DeOldifyColorization')
transform_list = [
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]
transform = transforms.Compose(transform_list)
#a = transforms.ToTensor()(a)
img = img.convert('L')
img = transform(img)
img = torch.unsqueeze(img, 0)
result = model(img)
result = result[0].detach()
result = (result +1)/2.0
#img = transforms.Grayscale(3)(img)
#img = transforms.ToTensor()(img)
#img = torch.unsqueeze(img, 0)
#result = model(img)
#result = torch.clip(result, min=0, max=1)
image_pil = transforms.ToPILImage()(result)
return image_pil
transform_seq = get_transform(model_name)
img = transform_seq(img)
# if model_name == "Pix2Pix Unet 256":
# img.resize((256,256))
img = np.array(img)
lab = color.rgb2lab(img).astype(np.float32)
lab_t = transforms.ToTensor()(lab)
A = lab_t[[0], ...] / 50.0 - 1.0
B = lab_t[[1, 2], ...] / 110.0
#data = {'A': A, 'B': B, 'A_paths': "", 'B_paths': ""}
L = torch.unsqueeze(A, 0)
#print(L.shape)
ab = model(L)
Lab = lab2rgb(L, ab).astype(np.uint8)
image_pil = Image.fromarray(Lab)
#image_pil.save('test.png')
#print(Lab.shape)
return image_pil
def colorizaition(image,model_name):
image = Image.fromarray(image)
result = inferColorization(image,model_name)
return result
def run_cmd(command):
try:
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
def run(image):
if os.path.isdir("Temp"):
shutil.rmtree("Temp")
os.makedirs("Temp")
os.makedirs("Temp/input")
print(type(image))
cv2.imwrite("Temp/input/input_img.png", image)
command = ("python run.py --input_folder "
+ "Temp/input"
+ " --output_folder "
+ "Temp"
+ " --GPU "
+ "-1"
+ " --with_scratch")
run_cmd(command)
result_restoration = Image.open("Temp/final_output/input_img.png")
shutil.rmtree("Temp")
result_colorization = inferColorization(result_restoration)
return result_colorization
def load_im(url):
return url
with gr.Blocks() as app:
with gr.Row():
gr.Column()
with gr.Column():
im = gr.Image(label="Input Image")
im_btn=gr.Button(label="Restore")
out_im = gr.Image(label="Restored Image")
gr.Column()
im_btn.click(run,im,out_im)
app.queue(concurrency_count=100).launch(show_api=False) |