File size: 4,964 Bytes
f7ebd0a
 
 
 
 
 
 
 
 
 
 
 
b786aa7
8d1c14c
4b642e0
e679c2e
8d1c14c
f7ebd0a
 
2084052
 
 
 
 
f7ebd0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65f78b
a53f406
a65f78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ebd0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2d9df3
9ff5a4f
f56e9e2
 
f7ebd0a
f56e9e2
 
d3119cf
a65f78b
f56e9e2
a65f78b
 
f56e9e2
a65f78b
f56e9e2
a65f78b
 
 
 
f7ebd0a
f56e9e2
 
a65f78b
e5867d0
f7ebd0a
 
cd8ac5c
 
21fede7
cd8ac5c
085466f
62ca83d
 
 
 
 
 
 
e2d9df3
085466f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import os
import cv2 
import shutil
import sys
from subprocess import call
import torch
import numpy as np
from skimage import color
import torchvision.transforms as transforms
from PIL import Image
import torch
import uuid
import dlib
uid = uuid.uuid4()
 
#os.system("pip install dlib")
os.system('bash setup.sh')

def run_im(inp):
    outp=run(inp)
    return outp


def lab2rgb(L, AB):
    """Convert an Lab tensor image to a RGB numpy output
    Parameters:
        L  (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
        AB (2-channel tensor array):  ab channel images (range: [-1, 1], torch tensor array)

    Returns:
        rgb (RGB numpy image): rgb output images  (range: [0, 255], numpy array)
    """
    AB2 = AB * 110.0
    L2 = (L + 1.0) * 50.0
    Lab = torch.cat([L2, AB2], dim=1)
    Lab = Lab[0].data.cpu().float().numpy()
    Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
    rgb = color.lab2rgb(Lab) * 255
    return rgb

def get_transform(model_name,params=None, grayscale=False, method=Image.BICUBIC):
    #params
    preprocess = 'resize'
    load_size = 256
    crop_size = 256
    transform_list = []
    if grayscale:
        transform_list.append(transforms.Grayscale(1))
    if model_name == "Pix2Pix Unet 256":
        osize = [load_size, load_size]
        transform_list.append(transforms.Resize(osize, method))
    # if 'crop' in preprocess:
    #     if params is None:
    #         transform_list.append(transforms.RandomCrop(crop_size))

    return transforms.Compose(transform_list)

def inferRestoration(img, model_name):
    #if model_name == "Pix2Pix":
    model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'pix2pixRestoration_unet256')
    transform_list = [
                transforms.ToTensor(),
                transforms.Resize([256,256], Image.BICUBIC),
                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                ]
    transform = transforms.Compose(transform_list)
    img = transform(img)
    img = torch.unsqueeze(img, 0)
    result = model(img)
    result = result[0].detach()
    result = (result +1)/2.0
    
    result = transforms.ToPILImage()(result)
    return result

def inferColorization(img):
    model_name = "Deoldify"
    model = torch.hub.load('manhkhanhad/ImageRestorationInfer', 'DeOldifyColorization')
    transform_list = [
              transforms.ToTensor(),
              transforms.Normalize((0.5,), (0.5,))
                ]
    transform = transforms.Compose(transform_list)
    #a = transforms.ToTensor()(a)
    img = img.convert('L')
    img = transform(img)
    img = torch.unsqueeze(img, 0)
    result = model(img)
    
    result = result[0].detach()
    result = (result +1)/2.0
    
    #img = transforms.Grayscale(3)(img)
    #img = transforms.ToTensor()(img)
    #img = torch.unsqueeze(img, 0)
    #result = model(img)
    #result = torch.clip(result, min=0, max=1)
    image_pil = transforms.ToPILImage()(result)
    return image_pil
    
    transform_seq = get_transform(model_name)
    img = transform_seq(img)
    # if model_name == "Pix2Pix Unet 256":
    #     img.resize((256,256))
    img = np.array(img)
    lab = color.rgb2lab(img).astype(np.float32)
    lab_t = transforms.ToTensor()(lab)
    A = lab_t[[0], ...] / 50.0 - 1.0
    B = lab_t[[1, 2], ...] / 110.0
    #data = {'A': A, 'B': B, 'A_paths': "", 'B_paths': ""}
    L = torch.unsqueeze(A, 0)
    #print(L.shape)
    ab = model(L)
    Lab = lab2rgb(L, ab).astype(np.uint8)
    image_pil = Image.fromarray(Lab)
    #image_pil.save('test.png')
    #print(Lab.shape)
    return image_pil
    
def colorizaition(image,model_name):
    image = Image.fromarray(image)
    result = inferColorization(image,model_name)
    return result


def run_cmd(command):
    try:
        call(command, shell=True)
    except KeyboardInterrupt:
        print("Process interrupted")
        sys.exit(1)

def run(image):
    
    if os.path.isdir("Temp"):
        shutil.rmtree("Temp")
    
    os.makedirs("Temp")
    os.makedirs("Temp/input")

    print(type(image))
    cv2.imwrite("Temp/input/input_img.png", image)

    command = ("python run.py --input_folder "
            + "Temp/input"
            + " --output_folder "
            + "Temp"
            + " --GPU "
            + "-1"
            + " --with_scratch")
    run_cmd(command)

    result_restoration = Image.open("Temp/final_output/input_img.png")
    shutil.rmtree("Temp")
    
    result_colorization = inferColorization(result_restoration)

    return result_colorization
def load_im(url):
    return url
 
    
with gr.Blocks() as app:
    with gr.Row():
        gr.Column()
        with gr.Column():
            im = gr.Image(label="Input Image")
            im_btn=gr.Button(label="Restore")
            out_im = gr.Image(label="Restored Image")
        gr.Column()
    im_btn.click(run,im,out_im)
app.queue(concurrency_count=100).launch(show_api=False)