|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import pytest |
|
|
|
from transformers import DetrConfig, MaskFormerConfig, ResNetBackbone, ResNetConfig, TimmBackbone |
|
from transformers.testing_utils import require_torch, slow |
|
from transformers.utils.backbone_utils import ( |
|
BackboneMixin, |
|
get_aligned_output_features_output_indices, |
|
load_backbone, |
|
verify_out_features_out_indices, |
|
) |
|
from transformers.utils.import_utils import is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import BertPreTrainedModel |
|
|
|
|
|
class BackboneUtilsTester(unittest.TestCase): |
|
def test_get_aligned_output_features_output_indices(self): |
|
stage_names = ["a", "b", "c"] |
|
|
|
|
|
out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names) |
|
self.assertEqual(out_features, ["c"]) |
|
self.assertEqual(out_indices, [2]) |
|
|
|
|
|
out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names) |
|
self.assertEqual(out_features, ["a", "c"]) |
|
self.assertEqual(out_indices, [0, 2]) |
|
|
|
|
|
out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names) |
|
self.assertEqual(out_features, ["a", "c"]) |
|
self.assertEqual(out_indices, [0, 2]) |
|
|
|
|
|
out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names) |
|
self.assertEqual(out_features, ["a", "c"]) |
|
self.assertEqual(out_indices, [-3, -1]) |
|
|
|
def test_verify_out_features_out_indices(self): |
|
|
|
with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"): |
|
verify_out_features_out_indices(["a", "b"], (0, 1), None) |
|
|
|
|
|
with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"): |
|
verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"]) |
|
|
|
|
|
with pytest.raises( |
|
ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]" |
|
): |
|
verify_out_features_out_indices(["a", "b"], (0, 1), ["a"]) |
|
|
|
|
|
with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"): |
|
verify_out_features_out_indices(["a", "a"], None, ["a"]) |
|
|
|
|
|
with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"): |
|
verify_out_features_out_indices(None, 0, ["a", "b"]) |
|
|
|
|
|
with pytest.raises( |
|
ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)" |
|
): |
|
verify_out_features_out_indices(None, (0, 1), ["a"]) |
|
|
|
|
|
with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"): |
|
verify_out_features_out_indices(None, (0, 0), ["a"]) |
|
|
|
|
|
with pytest.raises( |
|
ValueError, match="out_features and out_indices should have the same length if both are set" |
|
): |
|
verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"]) |
|
|
|
|
|
with pytest.raises( |
|
ValueError, match="out_features and out_indices should correspond to the same stages if both are set" |
|
): |
|
verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"]) |
|
|
|
|
|
with pytest.raises( |
|
ValueError, |
|
match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]", |
|
): |
|
verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"]) |
|
|
|
with pytest.raises( |
|
ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)" |
|
): |
|
verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"]) |
|
|
|
|
|
verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"]) |
|
|
|
def test_backbone_mixin(self): |
|
backbone = BackboneMixin() |
|
|
|
backbone.stage_names = ["a", "b", "c"] |
|
backbone._out_features = ["a", "c"] |
|
backbone._out_indices = [0, 2] |
|
|
|
|
|
self.assertEqual(backbone.out_features, ["a", "c"]) |
|
self.assertEqual(backbone.out_indices, [0, 2]) |
|
|
|
|
|
backbone.out_features = ["a", "b"] |
|
self.assertEqual(backbone.out_features, ["a", "b"]) |
|
self.assertEqual(backbone.out_indices, [0, 1]) |
|
|
|
backbone.out_indices = [-3, -1] |
|
self.assertEqual(backbone.out_features, ["a", "c"]) |
|
self.assertEqual(backbone.out_indices, [-3, -1]) |
|
|
|
@slow |
|
@require_torch |
|
def test_load_backbone_from_config(self): |
|
""" |
|
Test that load_backbone correctly loads a backbone from a backbone config. |
|
""" |
|
config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2))) |
|
backbone = load_backbone(config) |
|
self.assertEqual(backbone.out_features, ["stem", "stage2"]) |
|
self.assertEqual(backbone.out_indices, (0, 2)) |
|
self.assertIsInstance(backbone, ResNetBackbone) |
|
|
|
@slow |
|
@require_torch |
|
def test_load_backbone_from_checkpoint(self): |
|
""" |
|
Test that load_backbone correctly loads a backbone from a checkpoint. |
|
""" |
|
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_config=None) |
|
backbone = load_backbone(config) |
|
self.assertEqual(backbone.out_indices, [4]) |
|
self.assertEqual(backbone.out_features, ["stage4"]) |
|
self.assertIsInstance(backbone, ResNetBackbone) |
|
|
|
config = MaskFormerConfig( |
|
backbone="resnet18", |
|
use_timm_backbone=True, |
|
) |
|
backbone = load_backbone(config) |
|
|
|
|
|
self.assertEqual(backbone.out_indices, (-1,)) |
|
self.assertEqual(backbone.out_features, ["layer4"]) |
|
self.assertIsInstance(backbone, TimmBackbone) |
|
|
|
@slow |
|
@require_torch |
|
def test_load_backbone_backbone_kwargs(self): |
|
""" |
|
Test that load_backbone correctly configures the loaded backbone with the provided kwargs. |
|
""" |
|
config = MaskFormerConfig(backbone="resnet18", use_timm_backbone=True, backbone_kwargs={"out_indices": (0, 1)}) |
|
backbone = load_backbone(config) |
|
self.assertEqual(backbone.out_indices, (0, 1)) |
|
self.assertIsInstance(backbone, TimmBackbone) |
|
|
|
config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_kwargs={"out_indices": (0, 2)}) |
|
backbone = load_backbone(config) |
|
self.assertEqual(backbone.out_indices, (0, 2)) |
|
self.assertIsInstance(backbone, ResNetBackbone) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
config = MaskFormerConfig( |
|
backbone="microsoft/resnet-18", |
|
backbone_config=ResNetConfig(out_indices=(0, 2)), |
|
backbone_kwargs={"out_indices": (0, 1)}, |
|
) |
|
|
|
@slow |
|
@require_torch |
|
def test_load_backbone_in_new_model(self): |
|
""" |
|
Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded. |
|
""" |
|
|
|
|
|
class NewModel(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = load_backbone(config) |
|
self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
def get_equal_not_equal_weights(model_0, model_1): |
|
equal_weights = [] |
|
not_equal_weights = [] |
|
for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()): |
|
self.assertEqual(k0, k1) |
|
weights_are_equal = torch.allclose(v0, v1) |
|
if weights_are_equal: |
|
equal_weights.append(k0) |
|
else: |
|
not_equal_weights.append(k0) |
|
return equal_weights, not_equal_weights |
|
|
|
config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18") |
|
model_0 = NewModel(config) |
|
model_1 = NewModel(config) |
|
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) |
|
|
|
|
|
equal_weights = [w for w in equal_weights if "normalization" not in w] |
|
self.assertEqual(len(equal_weights), 0) |
|
self.assertEqual(len(not_equal_weights), 24) |
|
|
|
|
|
config.use_pretrained_backbone = True |
|
model_0 = NewModel(config) |
|
model_1 = NewModel(config) |
|
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) |
|
|
|
|
|
equal_weights = [w for w in equal_weights if "normalization" not in w] |
|
self.assertEqual(len(equal_weights), 20) |
|
|
|
self.assertEqual(len(not_equal_weights), 4) |
|
|
|
|
|
config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True) |
|
model_0 = NewModel(config) |
|
model_1 = NewModel(config) |
|
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) |
|
|
|
|
|
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] |
|
self.assertEqual(len(equal_weights), 0) |
|
self.assertEqual(len(not_equal_weights), 24) |
|
|
|
|
|
config.use_pretrained_backbone = True |
|
model_0 = NewModel(config) |
|
model_1 = NewModel(config) |
|
equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) |
|
|
|
|
|
equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] |
|
self.assertEqual(len(equal_weights), 20) |
|
|
|
self.assertEqual(len(not_equal_weights), 4) |
|
|