| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import unittest | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import pytest | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers import DetrConfig, MaskFormerConfig, ResNetBackbone, ResNetConfig, TimmBackbone | 
					
					
						
						| 
							 | 
						from transformers.testing_utils import require_torch, slow | 
					
					
						
						| 
							 | 
						from transformers.utils.backbone_utils import ( | 
					
					
						
						| 
							 | 
						    BackboneMixin, | 
					
					
						
						| 
							 | 
						    get_aligned_output_features_output_indices, | 
					
					
						
						| 
							 | 
						    load_backbone, | 
					
					
						
						| 
							 | 
						    verify_out_features_out_indices, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils.import_utils import is_torch_available | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_torch_available(): | 
					
					
						
						| 
							 | 
						    import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    from transformers import BertPreTrainedModel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class BackboneUtilsTester(unittest.TestCase): | 
					
					
						
						| 
							 | 
						    def test_get_aligned_output_features_output_indices(self): | 
					
					
						
						| 
							 | 
						        stage_names = ["a", "b", "c"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out_features, out_indices = get_aligned_output_features_output_indices(None, None, stage_names) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_features, ["c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_indices, [2]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out_features, out_indices = get_aligned_output_features_output_indices(["a", "c"], None, stage_names) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_features, ["a", "c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_indices, [0, 2]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out_features, out_indices = get_aligned_output_features_output_indices(None, [0, 2], stage_names) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_features, ["a", "c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_indices, [0, 2]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out_features, out_indices = get_aligned_output_features_output_indices(None, [-3, -1], stage_names) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_features, ["a", "c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(out_indices, [-3, -1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_verify_out_features_out_indices(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError, match="Stage_names must be set for transformers backbones"): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "b"], (0, 1), None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError, match="out_features must be a list got <class 'tuple'>"): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(("a", "b"), (0, 1), ["a", "b"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, match=r"out_features must be a subset of stage_names: \['a'\] got \['a', 'b'\]" | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "b"], (0, 1), ["a"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError, match=r"out_features must not contain any duplicates, got \['a', 'a'\]"): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "a"], None, ["a"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError, match="out_indices must be a list or tuple, got <class 'int'>"): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(None, 0, ["a", "b"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, match=r"out_indices must be valid indices for stage_names \['a'\], got \(0, 1\)" | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(None, (0, 1), ["a"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError, match=r"out_indices must not contain any duplicates, got \(0, 0\)"): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(None, (0, 0), ["a"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, match="out_features and out_indices should have the same length if both are set" | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "b"], (0,), ["a", "b", "c"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, match="out_features and out_indices should correspond to the same stages if both are set" | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "b"], (0, 2), ["a", "b", "c"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, | 
					
					
						
						| 
							 | 
						            match=r"out_features must be in the same order as stage_names, expected \['a', 'b'\] got \['b', 'a'\]", | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["b", "a"], (0, 1), ["a", "b"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with pytest.raises( | 
					
					
						
						| 
							 | 
						            ValueError, match=r"out_indices must be in the same order as stage_names, expected \(-2, 1\) got \(1, -2\)" | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            verify_out_features_out_indices(["a", "b"], (1, -2), ["a", "b"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        verify_out_features_out_indices(["a", "b", "d"], (0, 1, -1), ["a", "b", "c", "d"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_backbone_mixin(self): | 
					
					
						
						| 
							 | 
						        backbone = BackboneMixin() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        backbone.stage_names = ["a", "b", "c"] | 
					
					
						
						| 
							 | 
						        backbone._out_features = ["a", "c"] | 
					
					
						
						| 
							 | 
						        backbone._out_indices = [0, 2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["a", "c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, [0, 2]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        backbone.out_features = ["a", "b"] | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["a", "b"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, [0, 1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        backbone.out_indices = [-3, -1] | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["a", "c"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, [-3, -1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @slow | 
					
					
						
						| 
							 | 
						    @require_torch | 
					
					
						
						| 
							 | 
						    def test_load_backbone_from_config(self): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Test that load_backbone correctly loads a backbone from a backbone config. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig(backbone_config=ResNetConfig(out_indices=(0, 2))) | 
					
					
						
						| 
							 | 
						        backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["stem", "stage2"]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, (0, 2)) | 
					
					
						
						| 
							 | 
						        self.assertIsInstance(backbone, ResNetBackbone) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @slow | 
					
					
						
						| 
							 | 
						    @require_torch | 
					
					
						
						| 
							 | 
						    def test_load_backbone_from_checkpoint(self): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Test that load_backbone correctly loads a backbone from a checkpoint. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_config=None) | 
					
					
						
						| 
							 | 
						        backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, [4]) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["stage4"]) | 
					
					
						
						| 
							 | 
						        self.assertIsInstance(backbone, ResNetBackbone) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig( | 
					
					
						
						| 
							 | 
						            backbone="resnet18", | 
					
					
						
						| 
							 | 
						            use_timm_backbone=True, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, (-1,)) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_features, ["layer4"]) | 
					
					
						
						| 
							 | 
						        self.assertIsInstance(backbone, TimmBackbone) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @slow | 
					
					
						
						| 
							 | 
						    @require_torch | 
					
					
						
						| 
							 | 
						    def test_load_backbone_backbone_kwargs(self): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Test that load_backbone correctly configures the loaded backbone with the provided kwargs. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig(backbone="resnet18", use_timm_backbone=True, backbone_kwargs={"out_indices": (0, 1)}) | 
					
					
						
						| 
							 | 
						        backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, (0, 1)) | 
					
					
						
						| 
							 | 
						        self.assertIsInstance(backbone, TimmBackbone) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig(backbone="microsoft/resnet-18", backbone_kwargs={"out_indices": (0, 2)}) | 
					
					
						
						| 
							 | 
						        backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						        self.assertEqual(backbone.out_indices, (0, 2)) | 
					
					
						
						| 
							 | 
						        self.assertIsInstance(backbone, ResNetBackbone) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with pytest.raises(ValueError): | 
					
					
						
						| 
							 | 
						            config = MaskFormerConfig( | 
					
					
						
						| 
							 | 
						                backbone="microsoft/resnet-18", | 
					
					
						
						| 
							 | 
						                backbone_config=ResNetConfig(out_indices=(0, 2)), | 
					
					
						
						| 
							 | 
						                backbone_kwargs={"out_indices": (0, 1)}, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @slow | 
					
					
						
						| 
							 | 
						    @require_torch | 
					
					
						
						| 
							 | 
						    def test_load_backbone_in_new_model(self): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Tests that new model can be created, with its weights instantiated and pretrained backbone weights loaded. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        class NewModel(BertPreTrainedModel): | 
					
					
						
						| 
							 | 
						            def __init__(self, config): | 
					
					
						
						| 
							 | 
						                super().__init__(config) | 
					
					
						
						| 
							 | 
						                self.backbone = load_backbone(config) | 
					
					
						
						| 
							 | 
						                self.layer_0 = torch.nn.Linear(config.hidden_size, config.hidden_size) | 
					
					
						
						| 
							 | 
						                self.layer_1 = torch.nn.Linear(config.hidden_size, config.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def get_equal_not_equal_weights(model_0, model_1): | 
					
					
						
						| 
							 | 
						            equal_weights = [] | 
					
					
						
						| 
							 | 
						            not_equal_weights = [] | 
					
					
						
						| 
							 | 
						            for (k0, v0), (k1, v1) in zip(model_0.named_parameters(), model_1.named_parameters()): | 
					
					
						
						| 
							 | 
						                self.assertEqual(k0, k1) | 
					
					
						
						| 
							 | 
						                weights_are_equal = torch.allclose(v0, v1) | 
					
					
						
						| 
							 | 
						                if weights_are_equal: | 
					
					
						
						| 
							 | 
						                    equal_weights.append(k0) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    not_equal_weights.append(k0) | 
					
					
						
						| 
							 | 
						            return equal_weights, not_equal_weights | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        config = MaskFormerConfig(use_pretrained_backbone=False, backbone="microsoft/resnet-18") | 
					
					
						
						| 
							 | 
						        model_0 = NewModel(config) | 
					
					
						
						| 
							 | 
						        model_1 = NewModel(config) | 
					
					
						
						| 
							 | 
						        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        equal_weights = [w for w in equal_weights if "normalization" not in w] | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(equal_weights), 0) | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(not_equal_weights), 24) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        config.use_pretrained_backbone = True | 
					
					
						
						| 
							 | 
						        model_0 = NewModel(config) | 
					
					
						
						| 
							 | 
						        model_1 = NewModel(config) | 
					
					
						
						| 
							 | 
						        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        equal_weights = [w for w in equal_weights if "normalization" not in w] | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(equal_weights), 20) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(not_equal_weights), 4) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        config = DetrConfig(use_pretrained_backbone=False, backbone="resnet18", use_timm_backbone=True) | 
					
					
						
						| 
							 | 
						        model_0 = NewModel(config) | 
					
					
						
						| 
							 | 
						        model_1 = NewModel(config) | 
					
					
						
						| 
							 | 
						        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(equal_weights), 0) | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(not_equal_weights), 24) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        config.use_pretrained_backbone = True | 
					
					
						
						| 
							 | 
						        model_0 = NewModel(config) | 
					
					
						
						| 
							 | 
						        model_1 = NewModel(config) | 
					
					
						
						| 
							 | 
						        equal_weights, not_equal_weights = get_equal_not_equal_weights(model_0, model_1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        equal_weights = [w for w in equal_weights if "bn" not in w and "downsample.1" not in w] | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(equal_weights), 20) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.assertEqual(len(not_equal_weights), 4) | 
					
					
						
						| 
							 | 
						
 |