|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
isort:skip_file |
|
""" |
|
import os |
|
import pickle |
|
import tempfile |
|
import unittest |
|
from typing import Callable, Optional |
|
|
|
import numpy as np |
|
|
|
from transformers import ( |
|
BatchEncoding, |
|
BertTokenizer, |
|
BertTokenizerFast, |
|
PreTrainedTokenizer, |
|
PreTrainedTokenizerFast, |
|
TensorType, |
|
TokenSpan, |
|
is_tokenizers_available, |
|
) |
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer |
|
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow |
|
|
|
|
|
if is_tokenizers_available(): |
|
from tokenizers import Tokenizer |
|
from tokenizers.models import WordPiece |
|
|
|
|
|
class TokenizerUtilsTest(unittest.TestCase): |
|
def check_tokenizer_from_pretrained(self, tokenizer_class): |
|
s3_models = list(tokenizer_class.max_model_input_sizes.keys()) |
|
for model_name in s3_models[:1]: |
|
tokenizer = tokenizer_class.from_pretrained(model_name) |
|
self.assertIsNotNone(tokenizer) |
|
self.assertIsInstance(tokenizer, tokenizer_class) |
|
self.assertIsInstance(tokenizer, PreTrainedTokenizer) |
|
|
|
for special_tok in tokenizer.all_special_tokens: |
|
self.assertIsInstance(special_tok, str) |
|
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok) |
|
self.assertIsInstance(special_tok_id, int) |
|
|
|
def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None): |
|
batch_encoding_str = pickle.dumps(be_original) |
|
self.assertIsNotNone(batch_encoding_str) |
|
|
|
be_restored = pickle.loads(batch_encoding_str) |
|
|
|
|
|
self.assertEqual(be_restored.is_fast, be_original.is_fast) |
|
|
|
|
|
if be_original.is_fast: |
|
self.assertIsNotNone(be_restored.encodings) |
|
else: |
|
self.assertIsNone(be_restored.encodings) |
|
|
|
|
|
for original_v, restored_v in zip(be_original.values(), be_restored.values()): |
|
if equal_op: |
|
self.assertTrue(equal_op(restored_v, original_v)) |
|
else: |
|
self.assertEqual(restored_v, original_v) |
|
|
|
@slow |
|
def test_pretrained_tokenizers(self): |
|
self.check_tokenizer_from_pretrained(GPT2Tokenizer) |
|
|
|
def test_tensor_type_from_str(self): |
|
self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW) |
|
self.assertEqual(TensorType("pt"), TensorType.PYTORCH) |
|
self.assertEqual(TensorType("np"), TensorType.NUMPY) |
|
|
|
@require_tokenizers |
|
def test_batch_encoding_pickle(self): |
|
import numpy as np |
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") |
|
|
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=None)"): |
|
self.assert_dump_and_restore(tokenizer_p("Small example to encode")) |
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal |
|
) |
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=None)"): |
|
self.assert_dump_and_restore(tokenizer_r("Small example to encode")) |
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal |
|
) |
|
|
|
@require_tf |
|
@require_tokenizers |
|
def test_batch_encoding_pickle_tf(self): |
|
import tensorflow as tf |
|
|
|
def tf_array_equals(t1, t2): |
|
return tf.reduce_all(tf.equal(t1, t2)) |
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") |
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals |
|
) |
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals |
|
) |
|
|
|
@require_torch |
|
@require_tokenizers |
|
def test_batch_encoding_pickle_pt(self): |
|
import torch |
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") |
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal |
|
) |
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"): |
|
self.assert_dump_and_restore( |
|
tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal |
|
) |
|
|
|
@require_tokenizers |
|
def test_batch_encoding_is_fast(self): |
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") |
|
|
|
with self.subTest("Python Tokenizer"): |
|
self.assertFalse(tokenizer_p("Small example to_encode").is_fast) |
|
|
|
with self.subTest("Rust Tokenizer"): |
|
self.assertTrue(tokenizer_r("Small example to_encode").is_fast) |
|
|
|
@require_tokenizers |
|
def test_batch_encoding_word_to_tokens(self): |
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased") |
|
encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True) |
|
|
|
self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2)) |
|
self.assertEqual(encoded.word_to_tokens(1), None) |
|
self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3)) |
|
|
|
def test_batch_encoding_with_labels(self): |
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="np") |
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (2,)) |
|
|
|
with CaptureStderr() as cs: |
|
tensor_batch = batch.convert_to_tensors(tensor_type="np") |
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") |
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True) |
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (1,)) |
|
|
|
@require_torch |
|
def test_batch_encoding_with_labels_pt(self): |
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt") |
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (2,)) |
|
|
|
with CaptureStderr() as cs: |
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt") |
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") |
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True) |
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (1,)) |
|
|
|
@require_tf |
|
def test_batch_encoding_with_labels_tf(self): |
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf") |
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (2,)) |
|
|
|
with CaptureStderr() as cs: |
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf") |
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") |
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True) |
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (1,)) |
|
|
|
@require_flax |
|
def test_batch_encoding_with_labels_jax(self): |
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax") |
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (2,)) |
|
|
|
with CaptureStderr() as cs: |
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax") |
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}") |
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0}) |
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True) |
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3)) |
|
self.assertEqual(tensor_batch["labels"].shape, (1,)) |
|
|
|
def test_padding_accepts_tensors(self): |
|
features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}] |
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
|
|
batch = tokenizer.pad(features, padding=True) |
|
self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) |
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
batch = tokenizer.pad(features, padding=True, return_tensors="np") |
|
self.assertTrue(isinstance(batch["input_ids"], np.ndarray)) |
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
|
|
@require_torch |
|
def test_padding_accepts_tensors_pt(self): |
|
import torch |
|
|
|
features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}] |
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
|
|
batch = tokenizer.pad(features, padding=True) |
|
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) |
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
batch = tokenizer.pad(features, padding=True, return_tensors="pt") |
|
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor)) |
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
|
|
@require_tf |
|
def test_padding_accepts_tensors_tf(self): |
|
import tensorflow as tf |
|
|
|
features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}] |
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
|
|
batch = tokenizer.pad(features, padding=True) |
|
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) |
|
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
batch = tokenizer.pad(features, padding=True, return_tensors="tf") |
|
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor)) |
|
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]]) |
|
|
|
@require_tokenizers |
|
def test_instantiation_from_tokenizers(self): |
|
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) |
|
PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer) |
|
|
|
@require_tokenizers |
|
def test_instantiation_from_tokenizers_json_file(self): |
|
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json")) |
|
PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json")) |
|
|