|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import concurrent.futures |
|
import json |
|
import os |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerFast |
|
from transformers.testing_utils import require_tokenizers |
|
|
|
from ..test_tokenization_common import TokenizerTesterMixin |
|
|
|
|
|
@require_tokenizers |
|
class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase): |
|
rust_tokenizer_class = PreTrainedTokenizerFast |
|
test_slow_tokenizer = False |
|
test_rust_tokenizer = True |
|
from_pretrained_vocab_key = "tokenizer_file" |
|
|
|
def setUp(self): |
|
self.test_rust_tokenizer = False |
|
super().setUp() |
|
self.test_rust_tokenizer = True |
|
|
|
model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"] |
|
self.bytelevel_bpe_model_name = "SaulLu/dummy-tokenizer-bytelevel-bpe" |
|
|
|
|
|
self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths] |
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0]) |
|
tokenizer.save_pretrained(self.tmpdirname) |
|
|
|
def test_tokenizer_mismatch_warning(self): |
|
|
|
|
|
pass |
|
|
|
@unittest.skip( |
|
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model" |
|
) |
|
def test_encode_decode_with_spaces(self): |
|
pass |
|
|
|
@unittest.skip( |
|
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model" |
|
) |
|
def test_added_tokens_serialization(self): |
|
pass |
|
|
|
@unittest.skip( |
|
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model" |
|
) |
|
def test_additional_special_tokens_serialization(self): |
|
pass |
|
|
|
def test_prepare_for_model(self): |
|
|
|
|
|
pass |
|
|
|
def test_rust_tokenizer_signature(self): |
|
|
|
pass |
|
|
|
def test_training_new_tokenizer(self): |
|
tmpdirname_orig = self.tmpdirname |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
try: |
|
self.tmpdirname = tempfile.mkdtemp() |
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
tokenizer.save_pretrained(self.tmpdirname) |
|
super().test_training_new_tokenizer() |
|
finally: |
|
|
|
|
|
shutil.rmtree(self.tmpdirname) |
|
self.tmpdirname = tmpdirname_orig |
|
|
|
def test_training_new_tokenizer_with_special_tokens_change(self): |
|
tmpdirname_orig = self.tmpdirname |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
try: |
|
self.tmpdirname = tempfile.mkdtemp() |
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
tokenizer.save_pretrained(self.tmpdirname) |
|
super().test_training_new_tokenizer_with_special_tokens_change() |
|
finally: |
|
|
|
|
|
shutil.rmtree(self.tmpdirname) |
|
self.tmpdirname = tmpdirname_orig |
|
|
|
def test_training_new_tokenizer_with_bytelevel(self): |
|
tokenizer = self.rust_tokenizer_class.from_pretrained(self.bytelevel_bpe_model_name) |
|
|
|
toy_text_iterator = ("a" for _ in range(1000)) |
|
new_tokenizer = tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50) |
|
|
|
encoding_ids = new_tokenizer.encode("a🤗") |
|
self.assertEqual(encoding_ids, [64, 172, 253, 97, 245]) |
|
|
|
def test_init_from_tokenizers_model(self): |
|
from tokenizers import Tokenizer |
|
|
|
sentences = ["Hello, y'all!", "How are you 😁 ? There should not be any issue right?"] |
|
|
|
tokenizer = Tokenizer.from_pretrained("google-t5/t5-base") |
|
|
|
tokenizer.enable_padding(pad_id=0, pad_token="<pad>", length=512, pad_to_multiple_of=8) |
|
self.assertEqual( |
|
tokenizer.padding, |
|
{ |
|
"length": 512, |
|
"pad_to_multiple_of": 8, |
|
"pad_id": 0, |
|
"pad_token": "<pad>", |
|
"pad_type_id": 0, |
|
"direction": "right", |
|
}, |
|
) |
|
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) |
|
tmpdirname = tempfile.mkdtemp() |
|
fast_tokenizer.save_pretrained(tmpdirname) |
|
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname) |
|
for tok in [fast_tokenizer, fast_from_saved]: |
|
self.assertEqual(tok.pad_token_id, 0) |
|
self.assertEqual(tok.padding_side, "right") |
|
self.assertEqual(tok.pad_token, "<pad>") |
|
self.assertEqual(tok.init_kwargs["max_length"], 512) |
|
self.assertEqual(tok.init_kwargs["pad_to_multiple_of"], 8) |
|
self.assertEqual(tok(sentences, padding = True), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1, 0, 0, 0, 0,0, 0, 0, 0],[ 571, 33, 25, 3, 2, 3, 58, 290, 225, 59, 36, 136, 962, 269, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}) |
|
|
|
tokenizer.enable_truncation(8, stride=0, strategy="longest_first", direction="right") |
|
self.assertEqual( |
|
tokenizer.truncation, {"max_length": 8, "stride": 0, "strategy": "longest_first", "direction": "right"} |
|
) |
|
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) |
|
tmpdirname = tempfile.mkdtemp() |
|
fast_tokenizer.save_pretrained(tmpdirname) |
|
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname) |
|
for tok in [fast_tokenizer, fast_from_saved]: |
|
self.assertEqual(tok.truncation_side, "right") |
|
self.assertEqual(tok.init_kwargs["truncation_strategy"], "longest_first") |
|
self.assertEqual(tok.init_kwargs["max_length"], 8) |
|
self.assertEqual(tok.init_kwargs["stride"], 0) |
|
|
|
|
|
self.assertEqual(tok(sentences, truncation = True, max_length = 8), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1],[ 571, 33, 25, 3, 2, 3, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1]]}) |
|
|
|
|
|
@require_tokenizers |
|
class TokenizerVersioningTest(unittest.TestCase): |
|
def test_local_versioning(self): |
|
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") |
|
json_tokenizer = json.loads(tokenizer._tokenizer.to_str()) |
|
json_tokenizer["model"]["vocab"]["huggingface"] = len(tokenizer) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.4.0.0.json"] |
|
tokenizer.save_pretrained(tmp_dir) |
|
json.dump(json_tokenizer, open(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), "w")) |
|
|
|
|
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) |
|
self.assertEqual(len(new_tokenizer), len(tokenizer) + 1) |
|
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str()) |
|
self.assertIn("huggingface", json_tokenizer["model"]["vocab"]) |
|
|
|
|
|
|
|
shutil.move(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), os.path.join(tmp_dir, "tokenizer.42.0.0.json")) |
|
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.42.0.0.json"] |
|
tokenizer.save_pretrained(tmp_dir) |
|
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) |
|
self.assertEqual(len(new_tokenizer), len(tokenizer)) |
|
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str()) |
|
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"]) |
|
|
|
def test_repo_versioning(self): |
|
|
|
repo = "hf-internal-testing/test-two-tokenizers" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(repo) |
|
self.assertEqual(len(tokenizer), 28997) |
|
json_tokenizer = json.loads(tokenizer._tokenizer.to_str()) |
|
self.assertIn("huggingface", json_tokenizer["model"]["vocab"]) |
|
|
|
|
|
import transformers as old_transformers |
|
|
|
old_transformers.tokenization_utils_base.__version__ = "3.0.0" |
|
old_tokenizer = old_transformers.models.auto.AutoTokenizer.from_pretrained(repo) |
|
self.assertEqual(len(old_tokenizer), 28996) |
|
json_tokenizer = json.loads(old_tokenizer._tokenizer.to_str()) |
|
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"]) |
|
|
|
|
|
@require_tokenizers |
|
class ReduceMutableBorrowTests(unittest.TestCase): |
|
def test_async_share_tokenizer(self): |
|
|
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained("robot-test/dummy-tokenizer-wordlevel") |
|
text = "The Matrix is a 1999 science fiction action film." |
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
futures = [executor.submit(self.fetch, tokenizer, text) for i in range(10)] |
|
return_value = [future.result() for future in futures] |
|
self.assertEqual(return_value, [[1, 10, 0, 8, 0, 18, 0, 0, 0, 2] for i in range(10)]) |
|
|
|
def fetch(self, tokenizer, text): |
|
return tokenizer.encode(text, truncation="longest_first", padding="longest") |
|
|