|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
import unittest |
|
|
|
import pytest |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig |
|
from transformers.testing_utils import ( |
|
is_torch_available, |
|
require_accelerate, |
|
require_auto_gptq, |
|
require_optimum, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
slow, |
|
) |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class GPTQConfigTest(unittest.TestCase): |
|
def test_bits(self): |
|
with self.assertRaises(ValueError): |
|
GPTQConfig(bits="") |
|
GPTQConfig(bits=1) |
|
GPTQConfig(bits=2) |
|
GPTQConfig(bits=4) |
|
|
|
def test_dataset(self): |
|
with self.assertRaises(ValueError): |
|
GPTQConfig(bits=2, dataset="auto_gpt") |
|
GPTQConfig(bits=2, dataset="c4") |
|
GPTQConfig(bits=2, dataset="ptb-new") |
|
|
|
def test_damp_percent(self): |
|
with self.assertRaises(ValueError): |
|
GPTQConfig(bits=2, damp_percent=10) |
|
GPTQConfig(bits=2, damp_percent=-1) |
|
GPTQConfig(bits=2, damp_percent="0") |
|
GPTQConfig(bits=2, damp_percent=0.01) |
|
|
|
def test_to_dict(self): |
|
quantization_config = GPTQConfig(bits=2) |
|
quantization_config.to_dict() |
|
|
|
def test_from_dict(self): |
|
dict = {"bits": 2} |
|
quantization_config = GPTQConfig.from_dict(dict) |
|
self.assertEqual(dict["bits"], quantization_config.bits) |
|
|
|
@require_optimum |
|
def test_optimum_config(self): |
|
from optimum.gptq import GPTQQuantizer |
|
|
|
config = GPTQConfig(bits=2) |
|
optimum_config = GPTQQuantizer.from_dict(config.to_dict_optimum()) |
|
self.assertEqual(optimum_config.bits, config.bits) |
|
new_config = GPTQConfig.from_dict_optimum(optimum_config.to_dict()) |
|
self.assertEqual(optimum_config.bits, new_config.bits) |
|
|
|
|
|
@slow |
|
@require_optimum |
|
@require_auto_gptq |
|
@require_torch_gpu |
|
class GPTQTest(unittest.TestCase): |
|
model_name = "bigscience/bloom-560m" |
|
|
|
input_text = "Hello my name is" |
|
|
|
EXPECTED_OUTPUTS = set() |
|
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") |
|
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I") |
|
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of") |
|
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.") |
|
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the") |
|
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,") |
|
|
|
|
|
EXPECTED_RELATIVE_DIFFERENCE = 1.664253062 |
|
|
|
bits = 4 |
|
group_size = 128 |
|
desc_act = False |
|
use_exllama = False |
|
|
|
dataset = [ |
|
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm." |
|
] |
|
|
|
device_map = None |
|
|
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
""" |
|
Setup quantized model |
|
""" |
|
cls.model_fp16 = AutoModelForCausalLM.from_pretrained( |
|
cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map |
|
) |
|
cls.mem_fp16 = cls.model_fp16.get_memory_footprint() |
|
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) |
|
|
|
quantization_config = GPTQConfig( |
|
bits=cls.bits, |
|
dataset=cls.dataset, |
|
tokenizer=cls.tokenizer, |
|
group_size=cls.group_size, |
|
desc_act=cls.desc_act, |
|
use_exllama=cls.use_exllama, |
|
) |
|
|
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained( |
|
cls.model_name, |
|
torch_dtype=torch.float16, |
|
device_map=cls.device_map, |
|
quantization_config=quantization_config, |
|
) |
|
|
|
def test_memory_footprint(self): |
|
r""" |
|
A simple test to check if the model conversion has been done correctly by checking on the |
|
memory footprint of the converted model |
|
""" |
|
|
|
mem_quantized = self.quantized_model.get_memory_footprint() |
|
|
|
self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE) |
|
|
|
def test_device_and_dtype_assignment(self): |
|
r""" |
|
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. |
|
Checks also if other models are casted correctly. |
|
""" |
|
|
|
if self.device_map is None: |
|
_ = self.quantized_model.to(0) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.quantized_model.to(torch.float16) |
|
|
|
def test_original_dtype(self): |
|
r""" |
|
A simple test to check if the model succesfully stores the original dtype |
|
""" |
|
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype")) |
|
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) |
|
self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16) |
|
|
|
def test_quantized_layers_class(self): |
|
""" |
|
Simple test to check if the model conversion has been done correctly by checking on |
|
the class type of the linear layers of the converted models |
|
""" |
|
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear |
|
|
|
QuantLinear = dynamically_import_QuantLinear( |
|
use_triton=False, |
|
desc_act=self.desc_act, |
|
group_size=self.group_size, |
|
bits=self.bits, |
|
disable_exllama=not self.use_exllama, |
|
disable_exllamav2=True, |
|
) |
|
self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear) |
|
|
|
def check_inference_correctness(self, model): |
|
r""" |
|
Test the generation quality of the quantized model and see that we are matching the expected output. |
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get |
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. |
|
""" |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
def check_quantized_layers_type(self, model, value): |
|
self.assertTrue(model.transformer.h[0].mlp.dense_4h_to_h.QUANT_TYPE == value) |
|
|
|
def test_generate_quality(self): |
|
""" |
|
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens |
|
""" |
|
if self.device_map is None: |
|
self.check_inference_correctness(self.quantized_model.to(0)) |
|
else: |
|
self.check_inference_correctness(self.quantized_model) |
|
|
|
def test_serialization(self): |
|
""" |
|
Test the serialization of the model and the loading of the quantized weights works |
|
""" |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
self.quantized_model.save_pretrained(tmpdirname) |
|
if not self.use_exllama: |
|
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( |
|
tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4) |
|
).to(0) |
|
self.check_quantized_layers_type(quantized_model_from_saved, "cuda-old") |
|
else: |
|
|
|
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map={"": 0}) |
|
self.check_quantized_layers_type(quantized_model_from_saved, "exllama") |
|
self.check_inference_correctness(quantized_model_from_saved) |
|
|
|
@require_accelerate |
|
def test_serialization_big_model_inference(self): |
|
""" |
|
Test the serialization of the model and the loading of the quantized weights with big model inference |
|
""" |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
self.quantized_model.save_pretrained(tmpdirname) |
|
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") |
|
self.check_inference_correctness(quantized_model_from_saved) |
|
|
|
def test_change_loading_attributes(self): |
|
""" |
|
Test the serialization of the model and the loading of the quantized weights works with another config file |
|
""" |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
self.quantized_model.save_pretrained(tmpdirname) |
|
if not self.use_exllama: |
|
self.check_quantized_layers_type(self.quantized_model, "cuda-old") |
|
|
|
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( |
|
tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map={"": 0} |
|
) |
|
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits) |
|
self.check_quantized_layers_type(quantized_model_from_saved, "exllama") |
|
self.check_inference_correctness(quantized_model_from_saved) |
|
|
|
|
|
@require_accelerate |
|
@require_torch_multi_gpu |
|
class GPTQTestDeviceMap(GPTQTest): |
|
device_map = "auto" |
|
|
|
|
|
@require_accelerate |
|
@require_torch_multi_gpu |
|
class GPTQTestDeviceMapExllama(GPTQTest): |
|
device_map = "auto" |
|
use_exllama = True |
|
|
|
|
|
@slow |
|
@require_optimum |
|
@require_auto_gptq |
|
@require_torch_gpu |
|
@require_accelerate |
|
class GPTQTestActOrderExllama(unittest.TestCase): |
|
""" |
|
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order). |
|
More information on those arguments here: |
|
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig |
|
""" |
|
|
|
EXPECTED_OUTPUTS = set() |
|
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.") |
|
|
|
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ" |
|
input_text = "Hello, how are you ?" |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
""" |
|
Setup quantized model |
|
""" |
|
cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028) |
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained( |
|
cls.model_name, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, |
|
quantization_config=cls.quantization_config, |
|
) |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) |
|
|
|
def check_inference_correctness(self, model): |
|
""" |
|
Test the generation quality of the quantized model and see that we are matching the expected output. |
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get |
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. |
|
""" |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
def test_quantized_layers_type(self): |
|
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllama") |
|
|
|
def test_generate_quality(self): |
|
""" |
|
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens |
|
""" |
|
self.check_inference_correctness(self.quantized_model) |
|
|
|
def test_max_input_length(self): |
|
""" |
|
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend. |
|
""" |
|
|
|
prompt = "I am in Paris and" * 1000 |
|
inp = self.tokenizer(prompt, return_tensors="pt").to(0) |
|
self.assertTrue(inp["input_ids"].shape[1] > 4028) |
|
with self.assertRaises(RuntimeError) as cm: |
|
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) |
|
self.assertTrue("temp_state buffer is too small" in str(cm.exception)) |
|
|
|
prompt = "I am in Paris and" |
|
inp = self.tokenizer(prompt, return_tensors="pt").to(0) |
|
self.assertTrue(inp["input_ids"].shape[1] < 4028) |
|
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) |
|
|
|
|
|
@slow |
|
@require_optimum |
|
@require_auto_gptq |
|
@require_torch_gpu |
|
@require_accelerate |
|
class GPTQTestExllamaV2(unittest.TestCase): |
|
""" |
|
Test GPTQ model with exllamav2 kernel and desc_act=True (also known as act-order). |
|
More information on those arguments here: |
|
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig |
|
""" |
|
|
|
EXPECTED_OUTPUTS = set() |
|
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.") |
|
|
|
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ" |
|
input_text = "Hello, how are you ?" |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
""" |
|
Setup quantized model |
|
""" |
|
cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2}) |
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained( |
|
cls.model_name, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, |
|
quantization_config=cls.quantization_config, |
|
) |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) |
|
|
|
def test_quantized_layers_type(self): |
|
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllamav2") |
|
|
|
def check_inference_correctness(self, model): |
|
""" |
|
Test the generation quality of the quantized model and see that we are matching the expected output. |
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get |
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. |
|
""" |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) |
|
|
|
def test_generate_quality(self): |
|
""" |
|
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens |
|
""" |
|
self.check_inference_correctness(self.quantized_model) |
|
|
|
|
|
|
|
@pytest.mark.skip |
|
@require_accelerate |
|
@require_torch_multi_gpu |
|
class GPTQTestDeviceMapCPUOffload(GPTQTest): |
|
device_map = { |
|
"transformer.word_embeddings": 0, |
|
"transformer.word_embeddings_layernorm": 0, |
|
"lm_head": 0, |
|
"transformer.h.0": 0, |
|
"transformer.h.1": 0, |
|
"transformer.h.2": 0, |
|
"transformer.h.3": 0, |
|
"transformer.h.4": 0, |
|
"transformer.h.5": 0, |
|
"transformer.h.6": 0, |
|
"transformer.h.7": 0, |
|
"transformer.h.8": 0, |
|
"transformer.h.9": 0, |
|
"transformer.h.10": 1, |
|
"transformer.h.11": 1, |
|
"transformer.h.12": 1, |
|
"transformer.h.13": 1, |
|
"transformer.h.14": 1, |
|
"transformer.h.15": 1, |
|
"transformer.h.16": 1, |
|
"transformer.h.17": 0, |
|
"transformer.h.18": "cpu", |
|
"transformer.h.19": "cpu", |
|
"transformer.h.20": "cpu", |
|
"transformer.h.21": "cpu", |
|
"transformer.h.22": "cpu", |
|
"transformer.h.23": 1, |
|
"transformer.ln_f": 0, |
|
} |
|
|