File size: 6,629 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
from torch import nn
import cupy as cp
import math
from os import path

class Quantizer(nn.Module):
    def __init__(self, config, codebook):
        super().__init__()

        self.nsq, nc, self.d = codebook.shape
        self.b = int(math.log2(nc))
        head_dim = config.hidden_size // config.num_attention_heads
        self.head_dim = head_dim
        qpk = config.num_attention_heads // config.num_key_value_heads
        self.window_length = getattr(config, 'window_length', 32)
        self.register_buffer('codebook', codebook)

        with open(path.join(path.dirname(__file__), "quantize.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d))
            self._quantize = cp.RawKernel(
                kernel_code,
                'quantize',
                backend="nvrtc"
            )

        with open(path.join(path.dirname(__file__), "dequantize.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d))
            self._dequantize = cp.RawKernel(
                kernel_code,
                'dequantize',
                backend="nvrtc"
            )

        with open(path.join(path.dirname(__file__), "dequantize_rope.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d)).replace('__HEAD_DIM__', str(head_dim))
            self._dequantize_rope = cp.RawKernel(
                kernel_code,
                'dequantize_rope',
                backend="nvrtc"
            )

        with open(path.join(path.dirname(__file__), "fused_rope_mult.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d)).replace('__HEAD_DIM__', str(head_dim))
            self._fused_rope_mult = cp.RawKernel(
                kernel_code,
                'fused_rope_mult',
                backend="nvrtc"
            )

        with open(path.join(path.dirname(__file__), "fused_rope_pos_mult_mqa.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d)).replace('__HEAD_DIM__', str(head_dim)).replace('__QPK__', str(qpk)).replace('__ROPE_THETA__', str(config.rope_theta))
            self._fused_rope_pos_mult = cp.RawKernel(
                kernel_code,
                'fused_rope_pos_mult',
                backend="nvrtc"
            )

        with open(path.join(path.dirname(__file__), "fused_mult_len.cu"), "r") as f:
            kernel_code = f.read().replace('__NSQ__', str(self.nsq)).replace('__B__', str(self.b)).replace('__D__', str(self.d)).replace('__HEAD_DIM__', str(head_dim)).replace('__QPK__', str(qpk))
            self._fused_mult = cp.RawKernel(
                kernel_code,
                'fused_mult',
                backend="nvrtc"
            )

    def quantize(self, x):
        n = x.numel() // x.shape[-1]
        codes = torch.empty(self.nsq, n, dtype=torch.uint8, device=x.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (1024, )

        self._quantize(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            x.data_ptr(),
            codes.data_ptr(),
            n
        ])

        return codes

    def dequantize(self, codes):
        n = codes.numel() // codes.shape[0]
        x = torch.zeros(n, self.nsq * self.d, dtype=torch.float16, device=codes.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (1024, )

        self._dequantize(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            codes.data_ptr(),
            x.data_ptr(),
            n
        ])

        return x
    
    def dequantize_rope(self, codes):
        _, batch_size, seq_len = codes.shape
        n = batch_size * seq_len
        x = torch.zeros(n, self.nsq * self.d, dtype=torch.float16, device=codes.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (1024, )

        self._dequantize_rope(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            codes.data_ptr(),
            x.data_ptr(),
            batch_size, seq_len
        ])

        return x

    def fused_rope_mult(self, codes, queries):
        _, batch_size, k_len = codes.shape
        _, n_heads, q_len, _ = queries.shape
        out = torch.zeros(batch_size, n_heads, q_len, k_len, dtype=torch.float16, device=codes.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (1024, )

        self._fused_rope_mult(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            codes.data_ptr(),
            queries.data_ptr(),
            out.data_ptr(),
            batch_size, q_len, k_len
        ])

        return out
    
    def fused_rope_pos_mult(self, codes, queries, position_ids):
        _, batch_size, k_len = codes.shape
        _, n_heads, q_len, _ = queries.shape
        position_offsets = position_ids[:, -1] - k_len + 1
        out = torch.zeros(batch_size, n_heads, q_len, k_len, dtype=torch.float32, device=codes.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (1024, )

        self._fused_rope_pos_mult(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            codes.data_ptr(),
            position_offsets.data_ptr(),
            queries.data_ptr(),
            out.data_ptr(),
            batch_size, q_len, k_len
        ])

        return out

    def fused_mult(self, codes, weights, skip_last=0):
        batch_size, n_heads, q_len, k_len = weights.shape
        out = torch.zeros(batch_size, n_heads, q_len, self.head_dim, dtype=torch.float16, device=codes.device)
        blocks_per_grid = (self.nsq, )
        threads_per_block = (min(1024, batch_size), )

        self._fused_mult(grid=blocks_per_grid, block=threads_per_block, shared_mem=(2 ** self.b) * self.d * 2, args=[
            self.codebook.data_ptr(),
            codes.data_ptr(),
            weights.data_ptr(),
            out.data_ptr(),
            batch_size, q_len, k_len, k_len - skip_last
        ])

        return out